55,027 research outputs found
Marine nematode taxonomy in the DNA age: the present and future of molecular tools to access their biodiversity
Molecular taxonomy is one of the most promising yet challenging fields of biology. Molecular markers such as nuclear and mitochondrial genes are being used in a variety of studies surveying marine nematode taxa. Sequences from more than 600 species have been deposited to date in online databases. These barcode sequences are assigned to 150 nominal species from 104 genera. There are 41 species assigned to Enoplea and 109 species to Chromadorea. Morphology-based surveys are greatly limited by processing speed, while barcoding approaches for nematodes are hampered by difficulties in matching sequence data with morphology-based taxonomy. DNA barcoding is a promising approach because some genes contain variable regions that are useful to discriminate species boundaries, discover cryptic species, quantify biodiversity and analyse phylogeny. We advocate a combination of several approaches in studies of molecular taxonomy, DNA barcoding and conventional taxonomy as a necessary step to enhance the knowledge of biodiversity of marine nematodes
Recommended from our members
A Universal Live Cell Barcoding-Platform for Multiplexed Human Single Cell Analysis.
Single-cell barcoding enables the combined processing and acquisition of multiple individual samples as one. This maximizes assay efficiency and eliminates technical variability in both sample preparation and analysis. Remaining challenges are the barcoding of live, unprocessed cells to increase downstream assay performance combined with the flexibility of the approach towards a broad range of cell types. To that end, we developed a novel antibody-based platform that allows the robust barcoding of live human cells for mass cytometry (CyTOF). By targeting both the MHC class I complex (beta-2-microglobulin) and a broadly expressed sodium-potassium ATPase-subunit (CD298) with platinum-conjugated antibodies, human immune cells, stem cells as well as tumor cells could be multiplexed in the same single-cell assay. In addition, we present a novel palladium-based covalent viability reagent compatible with this barcoding strategy. Altogether, this platform enables mass cytometry-based, live-cell barcoding across a multitude of human sample types and provides a scheme for multiplexed barcoding of human single-cell assays in general
Categorization of species as native or nonnative using DNA sequence signatures without a complete reference library.
New genetic diagnostic approaches have greatly aided efforts to document global biodiversity and improve biosecurity. This is especially true for organismal groups in which species diversity has been underestimated historically due to difficulties associated with sampling, the lack of clear morphological characteristics, and/or limited availability of taxonomic expertise. Among these methods, DNA sequence barcoding (also known as "DNA barcoding") and by extension, meta-barcoding for biological communities, has emerged as one of the most frequently utilized methods for DNA-based species identifications. Unfortunately, the use of DNA barcoding is limited by the availability of complete reference libraries (i.e., a collection of DNA sequences from morphologically identified species), and by the fact that the vast majority of species do not have sequences present in reference databases. Such conditions are critical especially in tropical locations that are simultaneously biodiversity rich and suffer from a lack of exploration and DNA characterization by trained taxonomic specialists. To facilitate efforts to document biodiversity in regions lacking complete reference libraries, we developed a novel statistical approach that categorizes unidentified species as being either likely native or likely nonnative based solely on measures of nucleotide diversity. We demonstrate the utility of this approach by categorizing a large sample of specimens of terrestrial insects and spiders (collected as part of the Moorea BioCode project) using a generalized linear mixed model (GLMM). Using a training data set of known endemic (n = 45) and known introduced species (n = 102), we then estimated the likely native/nonnative status for 4,663 specimens representing an estimated 1,288 species (412 identified species), including both those specimens that were either unidentified or whose endemic/introduced status was uncertain. Using this approach, we were able to increase the number of categorized specimens by a factor of 4.4 (from 794 to 3,497), and the number of categorized species by a factor of 4.8 from (147 to 707) at a rate much greater than chance (77.6% accuracy). The study identifies phylogenetic signatures of both native and nonnative species and suggests several practical applications for this approach including monitoring biodiversity and facilitating biosecurity
PPNID : a reference database and molecular identification pipeline for plant-parasitic nematodes
Motivation: The phylum Nematoda comprises the most cosmopolitan and abundant metazoans on Earth and plant-parasitic nematodes represent one of the most significant nematode groups, causing severe losses in agriculture. Practically, the demands for accurate nematode identification are high for ecological, agricultural, taxonomic and phylogenetic researches. Despite their importance, the morphological diagnosis is often a difficult task due to phenotypic plasticity and the absence of clear diagnostic characters while molecular identification is very difficult due to the problematic database and complex genetic background.
Results: The present study attempts to make up for currently available databases by creating a manually-curated database including all up-to-date authentic barcoding sequences. To facilitate the laborious process associated with the interpretation and identification of a given query sequence, we developed an automatic software pipeline for rapid species identification. The incorporated alignment function facilitates the examination of mutation distribution and therefore also reveals nucleotide autapomorphies, which are important in species delimitation. The implementation of genetic distance, plot and maximum likelihood phylogeny analysis provides more powerful optimality criteria than similarity searching and facilitates species delimitation using evolutionary or phylogeny species concepts. The pipeline streamlines several functions to facilitate more precise data analyses, and the subsequent interpretation is easy and straightforward
124-Color Super-resolution Imaging by Engineering DNA-PAINT Blinking Kinetics
Optical super-resolution techniques reach unprecedented spatial resolution down to a few nanometers. However, efficient multiplexing strategies for the simultaneous detection of hundreds of molecular species are still elusive. Here, we introduce an entirely new approach to multiplexed super-resolution microscopy by designing the blinking behavior of targets with engineered binding frequency and duration in DNA-PAINT. We assay this kinetic barcoding approach in silico and in vitro using DNA origami structures, show the applicability for multiplexed RNA and protein detection in cells, and finally experimentally demonstrate 124-plex super-resolution imaging within minutes.We thank Martin Spitaler and the imaging facility of the MPI of Biochemistry for confocal imaging support
A new molecular diagnostic tool for surveying and monitoring Triops cancriformis populations
© 2017 Sellers et al. The tadpole shrimp, Triops cancriformis, is a freshwater crustacean listed as endangered in the UK and Europe living in ephemeral pools. Populations are threatened by habitat destruction due to land development for agriculture and increased urbanisation. Despite this, there is a lack of efficient methods for discovering and monitoring populations. Established macroinvertebrate monitoring methods, such as net sampling, are unsuitable given the organism's life history, that include long lived diapausing eggs, benthic habits and ephemerally active populations. Conventional hatching methods, such as sediment incubation, are both time consuming and potentially confounded by bet-hedging hatching strategies of diapausing eggs. Here we develop a new molecular diagnostic method to detect viable egg banks of T. cancriformis, and compare its performance to two conventional monitoring methods involving diapausing egg hatching. We apply this method to a collection of pond sediments from the Wildfowl & Wetlands Trust Caerlaverock National Nature Reserve, which holds one of the two remaining British populations of T. cancriformis. DNA barcoding of isolated eggs, using newly designed species-specific primers for a large region of mtDNA, was used to estimate egg viability. These estimates were compared to those obtained by the conventional methods of sediment and isolation hatching. Our method outperformed the conventional methods, revealing six ponds holding viable T. cancriformis diapausing egg banks in Caerlaverock. Additionally, designed species-specific primers for a short region of mtDNA identified degraded, inviable eggs and were used to ascertain the levels of recent mortality within an egg bank. Together with efficient sugar flotation techniques to extract eggs from sediment samples, our molecular method proved to be a faster and more powerful alternative for assessing the viability and condition of T. cancriformis diapausing egg banks
Wolbachia and DNA barcoding insects: patterns, potential and problems
Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region
Barcoding and ILS Migration from Start to Finish: A Case Study
This practice-oriented article outlines one institution’s process of implementing both electronic checkout and a new integrated library system (ILS) for an academic library of 187,000 physical items. Special attention is given to the need for background research, administrative buy-in, and project management. Lessons learned and recommendations conclude the article
From high throughput 454 GS FLX data analysis process of 16S RNA gene sequences using barcoding to bacterial community exploration
From high throughput 454 GS FLX data analysis process of 16S RNA gene sequences using barcoding to bacterial community exploratio
- …
