1,597,862 research outputs found
Experimental band structure of the nearly half-metallic CuCrSe: An optical and magneto-optical study
Diagonal and off-diagonal optical conductivity spectra have been determined
form the measured reflectivity and magneto-optical Kerr effect (MOKE) over a
broad range of photon energy in the itinerant ferromagnetic phase of
CuCrSe at various temperatures down to T=10 K. Besides the low-energy
metallic contribution and the lower-lying charge transfer transition at
2 eV, a sharp and distinct optical transition was observed in the
mid-infrared region around 0.5 eV with huge magneto-optical activity.
This excitation is attributed to a parity allowed transition through the Se-Cr
hybridization-induced gap in the majority spin channel. The large off-diagonal
conductivity is explained by the high spin polarization in the vicinity of the
Fermi level and the strong spin-orbit interaction for the related charge
carriers. The results are discussed in connection with band structure
calculations
Transparent photonic band in metallodielectric nanostructures
Under certain conditions, a transparent photonic band can be designed into a
one-dimensional metallodielectric nanofilm structure. Unlike conventional pass
bands in photonic crystals, where the finite thickness of the structure affects
the transmission of electromagnetic fields having frequency within the pass
band, the properties of the transparent band are almost unaffected by the
finite thickness of the structure. In other words, an incident field at a
frequency within the transparent band exhibits 100% transmission independent of
the number of periods of the structure. The transparent photonic band
corresponds to excitation of pure eigenstate modes across the entire Bloch band
in structures possessing mirror symmetry. The conditions to create these modes
and thereby to lead to a totally transparent band phenomenon are discussed.Comment: To be published in Phys. Rev.
Band structure from random interactions
The anharmonic vibrator and rotor regions in nuclei are investigated in the
framework of the interacting boson model using an ensemble of random one- and
two-body interactions. We find a predominance of L(P)=0(+) ground states, as
well as strong evidence for the occurrence of both vibrational and rotational
band structures. This remarkable result suggests that such band structures
represent a far more general (robust) property of the collective model space
than is generally thought.Comment: 5 pages, 4 figures, Phys. Rev. Lett., in pres
The Importance of Static Correlation in the Band Structure of High Temperature Superconductors
Recently we presented a new band structure for La(2-x)Sr(x)CuO(4) and other
high temperature superconductors in which a second narrow band was seen to
cross the primary band at the Fermi level. The existence of this second Fermi
level band is in complete disagreement with the commonly accepted LDA band
structure. Yet it provided a crucial piece of physics which led to an
explanation for superconductivity and other unusual phenomena in these
materials. In this work we present details as to the nature of the failure of
conventional methods in deriving the band structure of the cuprates. In
particular, we use a number of chemical analogues to describe the problem of
static correlation in the band structure calculations and show how this can be
corrected with the predictable outcome of a Fermi level band crossing.Comment: The Journal of Physical Chemistry, in press. References and figures
updated. See www.firstprinciples.com for more information related to this
wor
The Properties of Outer Retinal Band Three Investigated With Adaptive-Optics Optical Coherence Tomography.
PurposeOptical coherence tomography's (OCT) third outer retinal band has been attributed to the zone of interdigitation between RPE cells and cone outer segments. The purpose of this paper is to investigate the structure of this band with adaptive optics (AO)-OCT.MethodsUsing AO-OCT, images were obtained from two subjects. Axial structure was characterized by measuring band 3 thickness and separation between bands 2 and 3 in segmented cones. Lateral structure was characterized by correlation of band 3 with band 2 and comparison of their power spectra. Band thickness and separation were also measured in a clinical OCT image of one subject.ResultsBand 3 thickness ranged from 4.3 to 6.4 μm. Band 2 correlations ranged between 0.35 and 0.41 and power spectra of both bands confirmed peak frequencies that agree with histologic density measurements. In clinical images, band 3 thickness was between 14 and 19 μm. Measurements of AO-OCT of interband distance were lower than our corresponding clinical OCT measurements.ConclusionsBand 3 originates from a structure with axial extent similar to a single surface. Correlation with band 2 suggests an origin within the cone photoreceptor. These two observations indicate that band 3 corresponds predominantly to cone outer segment tips (COST). Conventional OCT may overestimate both the thickness of band 3 and outer segment length
Photonic band structure of highly deformable, self-assembling systems
We calculate the photonic band structure at normal incidence of highly
deformable, self-assembling systems - cholesteric elastomers subjected to
external stress. Cholesterics display brilliant reflection and lasing owing to
gaps in their photonic band structure. The band structure of cholesteric
elastomers varies sensitively with strain, showing new gaps opening up and
shifting in frequency. A novel prediction of a total band gap is made, and is
expected to occur in the vicinity of the previously observed de Vries bandgap,
which is only for one polarisation
A machine learning route between band mapping and band structure
The electronic band structure (BS) of solid state materials imprints the
multidimensional and multi-valued functional relations between energy and
momenta of periodically confined electrons. Photoemission spectroscopy is a
powerful tool for its comprehensive characterization. A common task in
photoemission band mapping is to recover the underlying quasiparticle
dispersion, which we call band structure reconstruction. Traditional methods
often focus on specific regions of interests yet require extensive human
oversight. To cope with the growing size and scale of photoemission data, we
develop a generic machine-learning approach leveraging the information within
electronic structure calculations for this task. We demonstrate its capability
by reconstructing all fourteen valence bands of tungsten diselenide and
validate the accuracy on various synthetic data. The reconstruction uncovers
previously inaccessible momentum-space structural information on both global
and local scales in conjunction with theory, while realizing a path towards
integrating band mapping data into materials science databases
- …