411,902 research outputs found

    Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs

    Full text link
    Several recently developed multisymplectic schemes for Hamiltonian PDEs have been shown to preserve associated local conservation laws and constraints very well in long time numerical simulations. Backward error analysis for PDEs, or the method of modified equations, is a useful technique for studying the qualitative behavior of a discretization and provides insight into the preservation properties of the scheme. In this paper we initiate a backward error analysis for PDE discretizations, in particular of multisymplectic box schemes for the nonlinear Schrodinger equation. We show that the associated modified differential equations are also multisymplectic and derive the modified conservation laws which are satisfied to higher order by the numerical solution. Higher order preservation of the modified local conservation laws is verified numerically.Comment: 12 pages, 6 figures, accepted Math. and Comp. Simul., May 200

    Backward error analysis and the substitution law for Lie group integrators

    Full text link
    Butcher series are combinatorial devices used in the study of numerical methods for differential equations evolving on vector spaces. More precisely, they are formal series developments of differential operators indexed over rooted trees, and can be used to represent a large class of numerical methods. The theory of backward error analysis for differential equations has a particularly nice description when applied to methods represented by Butcher series. For the study of differential equations evolving on more general manifolds, a generalization of Butcher series has been introduced, called Lie--Butcher series. This paper presents the theory of backward error analysis for methods based on Lie--Butcher series.Comment: Minor corrections and additions. Final versio

    A Model for Understanding Numerical Stability

    Full text link
    We present a model of roundoff error analysis that combines simplicity with predictive power. Though not considering all sources of roundoff within an algorithm, the model is related to a recursive roundoff error analysis and therefore capable of correctly predicting stability or instability of an algorithm. By means of nontrivial examples, such as the componentwise backward stability analysis of Gaussian elimination with a single iterative refinement step, we demonstrate that the model even yields quantitative backward error bounds that show all the known problem-dependent terms (with the exception of dimension-dependent constants, which are the weak spot of any a priori analysis). The model can serve as a convenient tool for teaching or as a heuristic device to discover stability results before entering a further, detailed analysis

    Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation

    Get PDF
    A wave-vector-frequency-domain method is presented to describe one-directional forward or backward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for the nonlinear term is proposed by employing the Green’s function. Its approximation, which is more suitable for numerical implementation, is used. An error study is carried out to test the efficiency of the model by comparing the results with the Fubini solution. It is shown that the error grows as the propagation distance and step-size increase. However, for the specific case tested, even at a step size as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dimensional steered transducer problem is explored to verify the nonlinear acoustic field directional independence of the model. A three-dimensional single-element transducer problem is solved to verify the forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-projection behavior is examined. The sound field over a plane in an absorptive medium is backward projected to the source and compared with the initial field, where good agreement is observed
    corecore