75,518 research outputs found
Recurrent backpropagation and the dynamical approach to adaptive neural computation
Error backpropagation in feedforward neural network models is a popular learning algorithm that has its roots in nonlinear estimation and optimization. It is being used routinely to calculate error gradients in nonlinear systems with hundreds of thousands of parameters. However, the classical architecture for backpropagation has severe restrictions. The extension of backpropagation to networks with recurrent connections will be reviewed. It is now possible to efficiently compute the error gradients for networks that have temporal dynamics, which opens applications to a host of problems in systems identification and control
Face Recognition Using Complex Valued Backpropagation
Face recognition is one of biometrical research area that is still interesting. This study discusses the Complex-Valued Backpropagation algorithm for face recognition. Complex-Valued Backpropagation is an algorithm modified from Real-Valued Backpropagation algorithm where the weights and activation functions used are complex. The dataset used in this study consist of 250 images that is classified in 5 classes. The performance of face recognition using Complex-Valued Backpropagation is also compared with Real-Valued Backpropagation algorithm. Experimental results have shown that Complex-Valued Backpropagation performance is better than Real-Valued Backpropagation
Backpropagation training in adaptive quantum networks
We introduce a robust, error-tolerant adaptive training algorithm for
generalized learning paradigms in high-dimensional superposed quantum networks,
or \emph{adaptive quantum networks}. The formalized procedure applies standard
backpropagation training across a coherent ensemble of discrete topological
configurations of individual neural networks, each of which is formally merged
into appropriate linear superposition within a predefined, decoherence-free
subspace. Quantum parallelism facilitates simultaneous training and revision of
the system within this coherent state space, resulting in accelerated
convergence to a stable network attractor under consequent iteration of the
implemented backpropagation algorithm. Parallel evolution of linear superposed
networks incorporating backpropagation training provides quantitative,
numerical indications for optimization of both single-neuron activation
functions and optimal reconfiguration of whole-network quantum structure.Comment: Talk presented at "Quantum Structures - 2008", Gdansk, Polan
JET ANALYSIS BY NEURAL NETWORKS IN HIGH ENERGY HADRON-HADRON COLLISIONS
We study the possibility to employ neural networks to simulate jet clustering
procedures in high energy hadron-hadron collisions. We concentrate our analysis
on the Fermilab Tevatron energy and on the algorithm. We consider both
supervised multilayer feed-forward network trained by the backpropagation
algorithm and unsupervised learning, where the neural network autonomously
organizes the events in clusters.Comment: 9 pages, latex, 2 figures not included
- …
