39,473 research outputs found
A heparin-mimicking polymer conjugate stabilizes basic fibroblast growth factor.
Basic fibroblast growth factor (bFGF) is a protein that plays a crucial role in diverse cellular functions, from wound healing to bone regeneration. However, a major obstacle to the widespread application of bFGF is its inherent instability during storage and delivery. Here, we describe the stabilization of bFGF by covalent conjugation with a heparin-mimicking polymer, a copolymer consisting of styrene sulfonate units and methyl methacrylate units bearing poly(ethylene glycol) side chains. The bFGF conjugate of this polymer retained bioactivity after synthesis and was stable to a variety of environmentally and therapeutically relevant stressors--such as heat, mild and harsh acidic conditions, storage and proteolytic degradation--unlike native bFGF. Following the application of stress, the conjugate was also significantly more active than the control conjugate system in which the styrene sulfonate units were omitted from the polymer structure. This research has important implications for the clinical use of bFGF and for the stabilization of heparin-binding growth factors in general
Recommended from our members
Differential alphav integrin-mediated Ras-ERK signaling during two pathways of angiogenesis.
Antagonists of alphavbeta3 and alphavbeta5 disrupt angiogenesis in response to bFGF and VEGF, respectively. Here, we show that these alphav integrins differentially contribute to sustained Ras-extracellular signal-related kinase (Ras-ERK) signaling in blood vessels, a requirement for endothelial cell survival and angiogenesis. Inhibition of FAK or alphavbeta5 disrupted VEGF-mediated Ras and c-Raf activity on the chick chorioallantoic membrane, whereas blockade of FAK or integrin alphavbeta3 had no effect on bFGF-mediated Ras activity, but did suppress c-Raf activation. Furthermore, retroviral delivery of active Ras or c-Raf promoted ERK activity and angiogenesis, which anti-alphavbeta5 blocked upstream of Ras, whereas anti-alphavbeta3 blocked downstream of Ras, but upstream of c-Raf. The activation of c-Raf by bFGF/alphavbeta3 not only depended on FAK, but also required p21-activated kinase-dependent phosphorylation of serine 338 on c-Raf, whereas VEGF-mediated c-Raf phosphorylation/activation depended on Src, but not Pak. Thus, integrins alphavbeta3 and alphavbeta5 differentially regulate the Ras-ERK pathway, accounting for distinct vascular responses during two pathways of angiogenesis
Systematic optimization of human pluripotent stem cells media using Design of Experiments.
Human pluripotent stem cells (hPSC) are used to study the early stages of human development in vitro and, increasingly due to somatic cell reprogramming, cellular and molecular mechanisms of disease. Cell culture medium is a critical factor for hPSC to maintain pluripotency and self-renewal. Numerous defined culture media have been empirically developed but never systematically optimized for culturing hPSC. We applied design of experiments (DOE), a powerful statistical tool, to improve the medium formulation for hPSC. Using pluripotency and cell growth as read-outs, we determined the optimal concentration of both basic fibroblast growth factor (bFGF) and neuregulin-1 beta 1 (NRG1β1). The resulting formulation, named iDEAL, improved the maintenance and passage of hPSC in both normal and stressful conditions, and affected trimethylated histone 3 lysine 27 (H3K27me3) epigenetic status after genetic reprogramming. It also enhances efficient hPSC plating as single cells. Altogether, iDEAL potentially allows scalable and controllable hPSC culture routine in translational research. Our DOE strategy could also be applied to hPSC differentiation protocols, which often require numerous and complex cell culture media
Role of Prion protein-EGFR multimolecular complex during neuronal differentiation of human dental pulp-derived stem cells
Cellular prion protein (PrPC) is expressed in a wide variety of stem cells in which regulates their self-renewal as well as differentiation potential. In this study we investigated the presence of PrPCin human dental pulp-derived stem cells (hDPSCs) and its role in neuronal differentiation process. We show that hDPSCs expresses early PrPCat low concentration and its expression increases after two weeks of treatment with EGF/bFGF. Then, we analyzed the association of PrPCwith gangliosides and EGF receptor (EGF-R) during neuronal differentiation process. PrPCassociates constitutively with GM2 in control hDPSCs and with GD3 only after neuronal differentiation. Otherwise, EGF-R associates weakly in control hDPSCs and more markedly after neuronal differentiation. To analyze the functional role of PrPCin the signal pathway mediated by EGF/EGF-R, a siRNA PrP was applied to ablate PrPCand its function. The treatment with siRNA PrP significantly prevented Akt and ERK1/2 phosphorylation induced by EGF. Moreover, siRNA PrP treatment significantly prevented neuronal-specific antigens expression induced by EGF/bFGF, indicating that cellular prion protein is essential for EGF/bFGF-induced hDPSCs differentiation. These results suggest that PrPCinteract with EGF-R within lipid rafts, playing a role in the multimolecular signaling complexes involved in hDPSCs neuronal differentiation
Concomitant Retrograde Coronary Venous Infusion of Basic Fibroblast Growth Factor Enhances Engraftment and Differentiation of Bone Marrow Mesenchymal Stem Cells for Cardiac Repair after Myocardial Infarction.
AIM: Basic fibroblast growth factor (bFGF) increases the migration and viability of bone marrow mesenchymal stem cells (MSCs) in vitro. Retrograde coronary venous infusion can provide both increased regional bFGF concentrations and homogeneous cell dissemination. We determined whether retrograde delivery of bFGF enhances the potency of transplanted MSCs for cardiac repair in a canine infarct model.
METHODS AND RESULTS: Under hypoxic conditions, cellular migration was significantly increased in MSCs co-cultured with bFGF compared to vascular endothelial growth factor or insulin-like growth factor, and bFGF promoted MSCs differentiation into a cardiomyocyte phenotype. A canine infarct model was employed by coronary ligation. One week later, animals were subjected to retrograde infusion of combination bFGF (200ng/mL) and MSCs (1×10(8) cells) (n=5), MSCs (1×10(8) cells, n=5), bFGF (200ng/mL, n=5), or placebo (phosphate-buffered saline, n=3). Four weeks after infusion, only the bFGF+MSCs therapy exhibited significantly increased left ventricular ejection fraction (LVEF) by echocardiography (p
CONCLUSIONS: Retrograde coronary venous bFGF infusion augments engraftment and differentiation capacity of transplanted MSCs, recovering cardiac function and preventing adverse remodeling. This novel combined treatment and delivery method is a promising strategy for cardiac repair after ischemic injury
Extracellular vesicle-induced differentiation of neural stem progenitor cells
Neural stem progenitor cells (NSPCs) from E13.5 mouse embryos can be maintained in culture under proliferating conditions. Upon growth-factor removal, they may differentiate toward either neuronal or glial phenotypes or both. Exosomes are small extracellular vesicles that are part of the cell secretome; they may contain and deliver both proteins and genetic material and thus play a role in cell–cell communication, guide axonal growth, modulate synaptic activity and regulate peripheral nerve regeneration. In this work, we were interested in determining whether NSPCs and their progeny can produce and secrete extracellular vesicles (EVs) and if their content can affect cell differentiation. Our results indicate that cultured NSPCs produce and secrete EVs both under proliferating conditions and after differentiation. Treatment of proliferating NSPCs with EVs derived from differentiated NSPCs triggers cell differentiation in a dose-dependent manner, as demonstrated by glial-and neuronal-marker expression
Molecular cloning and expression of novel fibroblast growth factor-2 conjugated with immunodominant domains of pseudomonas exotoxin
Angiogenesis is very important in cancer growth and metastasis. Basic fibroblast growth factor (bFGF) as one of the most important angiogenesis factors is an attractive target for cancer vaccine. Due to low immunogenicity, it cannot stimulate an effective immune response. Theoretically, pseudomonas exotoxin (PE) as a potent immunogenic carrier protein when fused to low immunogenic antigens such as bFGF significantly increased immunogenicity of it. In this study, we tried to molecular cloning and expression of bFGF conjugated with immunodominant domains of pseudomonas exotoxin. The coding sequence of fusion protein composed of bFGF linked to PE domains 1b and 2 using EAAAK poly linker. The KDEL sequence was also used in C-terminal coding sequence. It was synthesized and expressed using recombinant DNA technology in the bacterial expression system. Expression of recombinant protein verified using SDS-PAGE and western blot analyses. Finally, it purified using Ni-affinity chromatography. The band close to 37 kDa in SDS-PAGE and western blot analyses was aligned completely to designed sequence. Purified recombinant protein also showed as a clear single band near to 37 kDa
Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation.
Maternal embryonic leucine zipper kinase (MELK) was previously identified in a screen for genes enriched in neural progenitors. Here, we demonstrate expression of MELK by progenitors in developing and adult brain and that MELK serves as a marker for self-renewing multipotent neural progenitors (MNPs) in cultures derived from the developing forebrain and in transgenic mice. Overexpression of MELK enhances (whereas knockdown diminishes) the ability to generate neurospheres from MNPs, indicating a function in self-renewal. MELK down-regulation disrupts the production of neurogenic MNP from glial fibrillary acidic protein (GFAP)-positive progenitors in vitro. MELK expression in MNP is cell cycle regulated and inhibition of MELK expression down-regulates the expression of B-myb, which is shown to also mediate MNP proliferation. These findings indicate that MELK is necessary for proliferation of embryonic and postnatal MNP and suggest that it regulates the transition from GFAP-expressing progenitors to rapid amplifying progenitors in the postnatal brain
Porcine bone scaffolds adsorb growth factors secreted by MSCs and improve bone tissue repair
An ideal tissue-engineered bone graft should have both excellent pro-osteogenesis and
pro-angiogenesis properties to rapidly realize the bone regeneration
in vivo
. To meet this goal, in
this work a porcine bone scaffold was successfully used as a Trojan horse to store growth factors
produced by mesenchymal stem cells (MSCs). This new scaffold showed a time-dependent release
of bioactive growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast
growth factor (bFGF),
in vitro
. The biological effect of the growth factors-adsorbed scaffold on the
in vitro
commitment of MSCs into osteogenic and endothelial cell phenotypes has been evaluated.
In addition, we have investigated the activity of growth factor-impregnated granules in the repair of
critical-size defects in rat calvaria by means of histological, immunohistochemical, and molecular
biology analyses. Based on the results of our work bone tissue formation and markers for bone
and vascularization were significantly increased by the growth factor-enriched bone granules after
implantation. This suggests that the controlled release of active growth factors from porcine bone
granules can enhance and promote bone regeneratio
- …
