223,526 research outputs found

    Symptom

    Get PDF
    Genetic Information Not a rare disease but incidence is unknown. No known population at increased risk. ETF alpha subunit: 15q23-25 ETF beta subunit 19q13.3 No known common mutations. OMIM # *231680; *130410; *231675; #23168

    Further supporting evidence for REEP1 phenotypic and allelic heterogeneity.

    Get PDF
    Heterozygous mutations in REEP1 (MIM #609139) encoding the receptor expression-enhancing protein 1 (REEP1) are a well-recognized and relatively frequent cause of autosomal dominant hereditary spastic paraplegia (HSP), SPG31.1 REEP1 localizes in the mitochondria and endoplasmic reticulum (ER) and facilitates ER-mitochondria interactions.2 In addition to the HSP phenotype, REEP1 has been associated with an autosomal dominant spinal type of Charcot-Marie-Tooth disease in 2 families.3 More recently, a patient with homozygous REEP1 mutation with a much more severe phenotype akin to spinal muscular atrophy with respiratory distress type 1 (SMARD1) was reported.4 In this report, we present a patient with a homozygous mutation in REEP1 manifesting a severe congenital distal spinal muscular atrophy (SMA) with diaphragmatic paralysis, expanding the phenotype from mild autosomal dominant HSP through to severe recessive distal SMA pattern

    Idiopathic Infantile arterial calcification –A Very rare case

    Get PDF
    A rare case of Idiopathic Arterial Calcification of Infancy (IACI), inherited as an autosomal recessive disease, is reported

    Dosage Sensing, Threshold Responses, and Epigenetic Memory: A Systems Biology Perspective on Random X‐Chromosome Inactivation

    No full text
    X‐chromosome inactivation ensures dosage compensation between the sexes in mammals by randomly choosing one out of the two X chromosomes in females for inactivation. This process imposes a plethora of questions: How do cells count their X chromosome number and ensure that exactly one stays active? How do they randomly choose one of two identical X chromosomes for inactivation? And how do they stably maintain this state of monoallelic expression? Here, different regulatory concepts and their plausibility are evaluated in the context of theoretical studies that have investigated threshold behavior, ultrasensitivity, and bistability through mathematical modeling. It is discussed how a twofold difference between a single and a double dose of X‐linked genes might be converted to an all‐or‐nothing response and how mutually exclusive expression can be initiated and maintained. Finally, candidate factors that might mediate the proposed regulatory principles are reviewed

    SPG10 is a rare cause of spastic paraplegia in European families

    Get PDF
    Background: SPG10 is an autosomal dominant form of hereditary spastic paraplegia (HSP), which is caused by mutations in the neural kinesin heavy chain KIF5A gene, the neuronal motor of fast anterograde axonal transport. Only four mutations have been identified to date.Objective: To determine the frequency of SPG10 in European families with HSP and to specify the SPG10 phenotype.Patients and methods: 80 index patients from families with autosomal dominant HSP were investigated for SPG10 mutations by direct sequencing of the KIF5A motor domain. Additionally, the whole gene was sequenced in 20 of these families.Results: Three novel KIF5A mutations were detected in German families, including one missense mutation (c.759G>T, p.K253N), one in frame deletion (c.768_770delCAA, p.N256del) and one splice site mutation (c.217G>A). Onset of gait disturbance varied from infancy to 30 years of age. All patients presented clinically with pure HSP, but a subclinical sensory--motor neuropathy was detected by neurophysiology studies.Conclusions: SPG10 accounts for approximately 3% of European autosomal dominant HSP families. All mutations affect the motor domain of kinesin and thus most likely impair axonal transport. Clinically, SPG10 is characterised by spastic paraplegia with mostly subclinical peripheral neuropathy

    Further genetic heterogeneity for autosomal dominant human sutural cataracts

    Get PDF
    A unique sutural cataract was observed in a 4-generation German family to be transmitted as an isolated autosomal, dominant trait. Since mutations in the gamma-crystallin encoding CRYG genes have previously been demonstrated to be the most frequent reason for isolated congenital cataracts, all 4 active CRYG genes have been sequenced. A single base-pair change in the CRYGA gene has been shown, leading to a premature stop codon. This was not observed in 170 control individuals. However, it did not segregate with the disease phenotype. This is the first truncating mutation in an active CRYG gene without a dominant phenotype. As the CRYGA mutation did not explain the cataract, several other candidate loci (CCV, GJA8, CRYBB2, BFSP2, MIP, GJA8, central pouch-like, CRYBA1) were investigated by micro-satellite markers and linkage analysis, but they were excluded based on the combination of haplotype analysis and two-point linkage analysis. The phenotype in this family is due to a mutation in another sutural cataract gene yet to be identified

    Development of a reporter gene assay to identify control elements required for dosage compensation in Drosophila Melanogaster : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Genetics at Massey University

    Get PDF
    Dosage compensation (equalisation of X-linked gene products) occurs in Drosophila melanogaster by a two-fold transcriptional increase of X-linked gene expression in the male. This involves the binding of four proteins, MSL-1, MSL-2, MSL-3 and MLE (collectively known as the MSLs), to hundreds of sites along the length of the male X. The MSLs are thought to recruit MOF, a histone acetyl transferase, which facilitates the increase in transcriptional activity of X-linked genes. The DNA sequences required to target the MSL complex to the X chromosome (known as dosage compensation regulatory elements, or DCREs) remain elusive, despite numerous attempts over the last ten years to identify them. DCREs are thought to be present at multiple sites along the length of the X chromosome, as antibodies to the MSLs bind to hundreds of sites along the X, and autosomal genes transduced to the X usually become dosage compensated. The first objective of this study was to develop a reporter gene assay to screen for DCREs that would minimise problems previously encountered. A construct consisting of the constitutive armadillo promoter fused to the lacZ reporter gene (called arm-lacZ) was flanked by insulator elements which block the repressive effects of the autosomal chromatin environment. Fragments of X-linked DNA were inserted upstream of the armadillo promoter with the premise that males carrying one copy of an autosomal insertion of this construct would express twice the level of ß-galactosidase as females. Transgenic flies carrying autosomal insertions of X-linked fragments plus arm-lacZ were generated and one dose males and females were assayed for ß-galactosidase activity using a spectrophotometric assay. In all cases, males and females expressed the same level of lacZ. This suggests that no DCREs that could confer dosage compensation onto arm-lacZ were present in the X-linked fragments. arm-lacZ is capable of being dosage compensated as males and females carrying one copy of an X-linked insertion of arm-lacZ produce a 2:1 male to female ratio. This implies that DCREs of the 'strength' required to dosage compensate arm-lacZ are rarer than previously thought. A second method of dosage compensation that is independent of the MSLs is thought to occur in Drosophila. The X-linked gene runt is dosage compensated in the absence of the MSLs. It is possible that runt is sex specifically regulated by the female specific Sex lethal protein (Sxl). Sxl down-regulates msl-2 in females by binding to (U)8 or A(U)7 sequences in the msl-2 5' and 3' untranslated regions (UTRs) of the mRNA. runt mRNA contains three Sxl binding sites in its 3' UTR, as do 20 other X-linked genes. The second objective of this project was to determine if Sxl could down regulate a gene in females, purely by the addition of three Sxl binding sites to the 3'UTR. Sxl binding sites were inserted into the 3'UTR of arm-lacZ in the form of a 40 bp synthetic linker containing three of the sites, and also as a 170 bp fragment from the runt 3' UTR. ß-galactosidase assays of flies carrying the Sxl binding sites from runt showed that males expressed an average of 1.31 to 1.46 times the level of lacZ than females. This shows that Sxl can down-regulate a gene if there are Sxl binding sites in its 3' UTR, however, to achieve two-fold regulation, additional factors may be required, or topologically, the sites may not have been in the right position in the 3' UTR for optimal activity of Sxl. Flies carrying the synthetic linker expressed the same level of ß-galactosidase in both sexes which suggests that either additional elements within the 3' UTR are required, or that the spacing between the sites is critical for the action of Sxl

    Chromosome complement and meiosis in three species of the Neotropical bug genus Antiteuchus (Heteroptera, Pentatomidae, Discocephalinae)

    Get PDF
    Orcein staining of spermatocytes was used to study the meiotic behavior of holocentric chromosomes in three member of the genus Antiteuchus (commonly known as stink bugs). We describe and illustrate the karyotype of Antiteuchus mixtus, A. sepulcralis and A. macraspis which were cytogenetically characterized as having a diploid number of 2n = 14 and an XY sex chromosome system showing pre-reductional meiosis for autosomes and post-reductional meiosis for sex chromosomes. These species were also shown to have a long diffuse stage during meiotic prophase I and aberrant harlequin-type meiocytes. The chiasma frequency was also analyzed for two of the three species studied.Fil: Lanzone, Cecilia. Universidade Federal de Pernambuco; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: de Souza, Maria José. Universidade Federal de Pernambuco; Brasi

    Ancient origin and maternal inheritance of blue cuckoo eggs

    Get PDF
    Maternal inheritance via the female-specific W chromosome was long ago proposed as a potential solution to the evolutionary enigma of co-existing host-specific races (or 'gentes') in avian brood parasites. Here we report the first unambiguous evidence for maternal inheritance of egg colouration in the brood-parasitic common cuckoo Cuculus canorus. Females laying blue eggs belong to an ancient (∼2.6 Myr) maternal lineage, as evidenced by both mitochondrial and W-linked DNA, but are indistinguishable at nuclear DNA from other common cuckoos. Hence, cuckoo host races with blue eggs are distinguished only by maternally inherited components of the genome, which maintain host-specific adaptation despite interbreeding among males and females reared by different hosts. A mitochondrial phylogeny suggests that blue eggs originated in Asia and then expanded westwards as female cuckoos laying blue eggs interbred with the existing European population, introducing an adaptive trait that expanded the range of potential hosts

    Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy

    Get PDF
    Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies
    corecore