8 research outputs found

    禽畜鈣需要測定指標之探討

    No full text

    Development of digestive tract and effect of dietary protein on its development in goslings

    No full text
    本研究旨在探討雛鵝消化道之發育及其受飼糧蛋白質含量及來源之影響。結果顯示,雛鵝砂囊、腺胃及肝臟、胰臟之相對重量,在孵化後2週內迅速發育,分別於3及14日齡時達到最高發育速率;於剛孵化及3日齡時,小腸及大腸相對長度達到高峰。於1週齡之內雛鵝十二指腸絨毛型態呈細指狀,直至2~4週齡間逐漸發育變為寬大,呈掌狀或葉片狀;空腸與迴腸絨毛型態由細長指狀逐漸向上增長及加寬成圓柱尖端之指狀;各部位小腸絨毛高度、周長、面積、腸道腺窩深度及肌肉層厚度,隨著日齡增加而呈顯著線性提高( P < 0.05)。雛鵝胃蛋白酶比活性於孵化後即迅速提高,於3~7日齡間達到高峰。雛鵝胰臟澱粉酶或脂肪酶比活性於21日齡時達到最高;於3或14日齡時,胰臟中胰蛋白酶及胰凝乳蛋白酶活性或比活性最高。雛鵝胰臟中消化酶活性,均隨日齡之增加而呈顯著(P < 0.05)二次迴歸曲線之關係。於1至28日齡間,雛鵝小腸黏膜及內容物中澱粉酶、胰蛋白酶及胰凝乳蛋白酶比活性,均隨著日齡之增加而呈二次曲線之關係(P < 001-0.05),小腸之脂肪酶及盲腸內容物中纖纖素酶比活性,則隨日齡之增加而呈線性之提高(P < 0.05)。胰臟與腸道中胰蛋白酶及胰凝乳蛋白酶明顯較澱粉酶、纖維素酶及脂肪酶之發育為早,但酵素活性增加幅度則較少。不同飼糧蛋白質含量對雛鵝生長性狀及消化道發育之影響方面,顯示雛鵝隻日增重及飼料轉換率,以較低飼糧蛋白質含量(16%)之處理組顯著(P < 0.05)較差。以雛鵝日增重對飼糧蛋白質含量進行斷線法及二次迴歸分析,分別求得最低及最佳日增重所需飼糧蛋白質含量為19.88%及21.10%。雛鵝之小腸平均重量或長度,分別以22%或22~24%蛋白質含量處理組顯著(P < 0.05)較其他處理組重或長,並隨飼糧蛋白質含量增加而呈顯著(P < 0.05)直線或二次曲線之關係。於4週齡或全期之胃蛋白酶比活性,以24%蛋白質含量處理組者顯著(P < 0.05)較高。試驗期間胰臟中胰蛋白酶及胰凝乳蛋白酶比活性,均以16% 蛋白質處理組顯著(P < 0.05)較其他處理組低,並隨飼糧蛋白質含量增加呈顯著(P < 0.05)線性之關係;至4週齡時鵝隻十二指腸黏膜中胰蛋白酶與胰凝乳蛋白酶比活性,均隨飼糧蛋白質含量之增加而呈顯著(P < 0.05)二次迴歸曲線之關係,以18~20% 蛋白質含量處理組者最高;雛鵝之生長與胰臟中蛋白酶活性受飼糧蛋白質含量的影響之趨勢具有一致性,其中日增重與胰臟中蛋白酶或凝乳蛋白酶比活性具有較高的正相關。採食不同來源蛋白質對雛鵝生長及消化道之影響方面,雛鵝採食量及增重均以大豆粕處理組顯著(P < 0.05)較玉米筋粉組高,飼料轉換率以採食大豆粕及魚粉處理組顯著(P < 0.05)較其他處理組為佳。雛鵝消化器官、小腸重量或長度均以採食玉米筋粉處理組顯著(P < 0.05)較其他處理組輕或短。於3至4週齡間,鵝隻採食醱酵大豆粉或魚粉處理組顯著(P < 0.05)提高胃蛋白酶活性或比活性。胰臟中胰蛋白酶及胰凝乳蛋白酶活性以採食玉米筋粉處理組顯著(P < 0.05)較其他處理組低;於4週齡時,十二指腸黏膜及內容物中胰蛋白酶及胰凝乳蛋白酶活性及比活性,均以大豆粕或魚粉處理組顯著(P < 0.05)較高。綜上所述,雛鵝消化道發育與蛋白酶活性於孵化後迅速發育,於早期生長階段即達到高峰;消化道或蛋白酶發育於2週齡之內,隨飼糧蛋白質含量之增加而呈線性提高,直至3~4週齡間則呈二次曲線之關係。飼糧蛋白質含量對雛鵝日增重與胰臟中蛋白酶或凝乳蛋白酶比活性具有較高的正相關。雛鵝採食玉米筋粉組之生長性狀或蛋白酶之發育,顯著較其他蛋白質來源處理組者低。雛鵝採食大豆粕之植物性蛋白原料可完全取代如魚粉之動物性蛋白原料,而不明顯影響生長性狀及消化道之發育。The objective of this study was to investigate the development of digestive tract and effect of dietary protein levels and sources on its development in goslings. The results indicated that the relative weights (g/100g BW) of proventricule and gizzard, liver and pancreas peaked at 3 and 14 days of age, respectively. The relative lengths (cm/100g BW) of small intestine and large intestine peaked at 3 days of age and hatching, respectively. The villus height, width, perimeter, area, crypt depth and muscle layer of small intestine were increased linearly and significantly (P < 0.05) during the first four weeks. From hatching to first week, the villi of duodenum had a small and dense finger-like shape, after which more developed plate or tongue-like ones were observed at 4 wks of age. Meanwhile, jejunum and ileal villi were developed to finger-like villi with a round tip in goslings during the early growth period. Further, the specific activity (SA) of pepsin in mucosa of proventricule increased rapidly after hatching and reached a plateau between 3 to 7 days of age, followed by a substantial decline. The SA of pancreatic amylase and lipase increased with age and peaked at 21 days of age. The activities of pancreatic trypsin and chymotrypsin were highest at 3 and 14 days of age, respectively. The significant (P < 0.05) quadratic regression of the SA of pancreatic enzymes on age of goslings were existed. The SA of amylase, trypsin and cymotrypsin in the mucosa and content of small intestine had a significant (P < 0.01- 0.05) quadratic regression on age, respectively. Moreover, the SA of lipase in small intestine and cellulase in caecal content still increased linearly (P < 0.05) along with age of goslings, Meanwhile, the development of proteases in the intestine of goslings increased faster when compared with those of amylase, lipase and cellulase during the first four weeks after hatching. However, the increase of activities of proteases was less when compared with those of amylase or lipase. Birds fed with 16% CP diet had significantly (P < 0.05) less daily gain and feed conversion ratio. From the daily gain results, the estimated minimum and maximum protein requirements of goslings by broken-line method and quadratic regression assay were 19.88-- 21.10% during the starter period. Furthermore, the average weight and length of small intestine in goslings fed with 22% and 22- 24% CP diets had significantly (P < 0.05) heavier, respectively. There were significantly (P < 0.05) increased linear or quadratic when dietary protein level was increased. The SA of pepsin reached a plateau for goslings receiving the 24% CP diet at 4 weeks of age. The average SA of trypsin and chymotrypsin in pancreas decreased significantly (P < 0.05) to a lowest point when goslings fed with the 16% CP diet. Further, the SA of trypsin and chymotrypsin in duodenum increased (P < 0.05) quadratically as compared to goslings received 18 and 20% CP diets. However, the development of SA of proteases were similar to that of growth performance, with a closely positive correlation among trypsin, chymotrypsin and daily gain of goslings during the experimental period. The goslings fed with soybean meal ( SBM) diet had significantly (P < 0.05) heavier feed intake and daily gain as compared with corn gluten meal (CGM) diet. Moreover, the SBM and fish meal (FM) diets improved feed conversion ratio during experimental period. Further, the goslings received the CGM group had significantly (P < 0.05) lower weights of gizzard, proventriculus, liver and pancreas than other diets at 4 weeks of age. Furthermore, the weight and length of small intestine significantly (P < 0.05) decreased and shortened when goslings fed on CGM diet at 4 weeks of age. The SA of pepsin reached a plateau for goslings received the fermented soybean meal (FSM) or FM diets. The SA of trypsin and chymotrypsin significantly decreased when goslings fed with CGM diet. The goslings received the SBM or FM diets showed increasing and reaching a peak (P < 0.05) on the activity or SA of trypsin and chymotrypsin in duodenum at 4 weeks of age. These results indicated that the digestive tract and activities of proteases developed rapidly through the first two weeks of goslings. When dietary protein content was increased, there were significantly (P < 0.05) increased linear and quadratic during first two weeks and 3 to 4 weeks of age, respectively. There was a close positive correlation among trypsin, chymotrypsin and daily gain of goslings during the experimental period. The growth performance and development of digestive tract significantly decreased (P < 0.05) when goslings fed with the CGM diet. In conclusion, the SBM diet as a vegetable-protein feed could completely replace the animal protein feed such as FM diet during the starter period.目錄 壹、中文摘要……………………………………..………….…….……1 貳、英文摘要…………………………………….………….….…. .……3 參、前言……………………………………….……. ……….…… .……6 肆、文獻檢討………………………………….………………..……….7 一、鵝隻消化道構造與功能……………………………………………7 二、雛禽消化道之發育…………………………………………………9 三、雛禽消化酵素活性之發育….……………………….……………13 (一) 胰澱粉酶………………….……………………….…..……….13 (二) 蛋白酶……..…………..……………………………..………...14 1. 胃蛋白酶………….…………………..………………...….……..14 2. 胰臟蛋白酶………..…………………………………...…...…….15 (三) 脂肪酶…………….…………………………...….....………....20 四、飼糧蛋白質對家禽消化道發育與消化酶發育之影響……..…....22 (一) 消化器官之發育………………….………..…..…….………...22 (二) 消化酶活性之發育…………………………..….………..……23 伍、試驗部份.……..…….……..…….….……..…….….………..…….25 第一章 鵝隻消化道發育與消化酶發育之研究……...…………….…25 摘要 …. ……………………..…………………………………………25 前言 …. ……………………..…………………………………………26 材料與方法 …………………..……………………………………..…27 一、試驗材料及處理……………………………………………..…27 二、分析項目及方法..……………..………………………….…………..…28 三、統計分析. ……………..………………………….…………..…29 結果與討論 …. ……………………..……………………..………..…31 一、消化道…………………………………….…….…..…..……..…31 二、胃蛋白酶活性………………….……..……………..……..……39 三、澱粉酶活性…………………..…………………………...….…40 四、脂肪酶活性……………..…………………………..………..…41 五、蛋白酶活性……………..…..…………………….. …….……..48 六、盲腸纖維素酶活性…….………………………………..………55 結論 …. ……………………..…………………………………………56 第二章 雛鵝小腸組織型態發育之研究………..………...….....……..57 摘要 …. ………………………..………………………………..…..…57 前言 …. ………………………..…………………………..………..…57 材料與方法 …………………. ………………………….….…………58 一、試驗材料及處理………………………………….……………58 二、分析項目及方法..…………………..…………………………………….59 三、 統計分析………..…………..………………….…………..…60 結果與討論 … ……………………...…………………….…………..61 結論 …..……………………………………………..…….……..……64 第三章 不同飼糧蛋白質含量對雛鵝生長性狀及蛋白酶發育之影響…………………………………………………..…….…..70 摘要 …..………………………..…………………………….….…….70 前言 …..………………………..………………………….…………..71 材料與方法 …………………..…………………………….……..…..71 一、試驗材料及處理…………….………………………….……..…72 二、採樣處理………..…………………..……………….………..…72 三、測定項目及方法…………………………………….………..…72 四、統計分析………..……………..……………………….……..…73 結果與討論 …. ………………………..…….…………….…….……76 一、生長性狀………..……………………………………..………..76 二、消化器官重量…………….……………………..…….….….…80 三、小腸重量及長度………………………………….…..…….…..85 四、胃蛋白酶活性………………….………………….……..….…92 五、胰臟蛋白酶活性……….………………….…….………..….…94 六、小腸蛋白酶活性…….…………………………..….….……….98 結論…. .….…………….………..……………………….…..…….…105 第四章 不同飼糧蛋白質來源對雛鵝生長性狀及蛋白酶發育之影響……………………………………………………….…106 摘要 …. ………….….………..…………………………………...…106 前言 …. ..……………………..………………….………...….…..…107 材料與方法…. ..……….………….………………………...……..…108 一、試驗材料及處理…..…....….……………………………..…108 二、採樣處理………..……………...……..………………………….………108 三、測定項目及方法……………………..…………………………………108 四、統計分析……………..……..………….……………………….109 結果與討論 …. ……..…………………..……..…….………….……111 一、生長性狀……..………….……………..…..…………………..111 二、消化器官重量……….…….……………..……………….……114 三、小腸重量及長度…….…………………..……………………..118 四、胃蛋白酶活性……………….…………………………………123 五、胰臟蛋白酶活性……….………………….…………….…..…124 六、小腸蛋白酶活性……….…………………….………….…..…127 結論 …………………….………….….………………..……………134 陸、總結 …………………………….……………………………….135 柒、參考文獻………………………………..………………………..137 圖次目錄 圖1. 鵝之消化道..........…..........….…...........…….....………...........…9 圖2. 小腸絨毛構造……...........….…...........…….....………..........…11 圖3. 胰蛋白酶之合成途徑…….....………............……….............…16 圖4. 胰蛋白酶之激活作用……….............….............……............…17 圖5. 胰凝乳蛋白酶之合成機制…............…...............……...........…19 圖6. 孵化後期至 28日齡雛鵝消化器官絕對及相對重量之發育...34 圖7. 孵化後期至28日齡雛鵝小腸絕對及相對重量之發育.…..…..35 圖8. 孵化後期至28日齡雛鵝小腸絕對及相對長度之發育.............36 圖9. 孵化後期至28日齡雛鵝大腸絕對及相對重量之發育.............37 圖10. 孵化後期至28日齡雛鵝大腸絕對及相對長度之發育.......…38 圖11. 孵化後期至28日齡鵝隻胰臟澱粉酶活性之發育….......……44 圖12. 孵化後期至28日齡雛鵝胰臟脂肪酶活性之發育……...……46 圖13. 孵化後期至28日齡雛鵝胰臟胰蛋白酶活性之發育...............51 圖14. 孵化後期至28日齡雛鵝胰臟胰凝乳蛋白酶活性之發育..…53 圖15. 於1日齡及28日齡雛鵝小腸腸道絨毛組織觀察……..…….67 圖16. 於1日齡雛鵝小腸腸道絨毛型態電顯觀察……………....….68 圖17. 於28日齡雛鵝小腸腸道絨毛型態電顯觀察….…….….……69 圖18. 0~4週齡雛鵝之隻日增重對飼糧蛋白質含量之二次迴歸..79 圖19. 0~4週齡雛鵝之隻日增重對飼糧蛋白質含量之斷線法迴歸……..………………………..…….…….…………….….…79 . 表次目錄 表1. 試驗飼糧組成…………………………….…………..…….... …….…30 表2. 0~28 日齡雛鵝腺胃黏膜及內容物胃蛋白酶活性之發育…. ……....40 表3. 0~28 日齡雛鵝小腸黏膜及內容物中胰澱粉酶活性之發育…….….45 表4. 0~28 日齡雛鵝小腸黏膜及內容物中脂肪酶活性之發育.……….....47 表5. 0~28 日齡雛鵝小腸黏膜及內容物中胰蛋白酶活性之發育……......52 表6. 0~28日齡雛鵝小腸黏膜及內容物中胰凝乳蛋白酶活性之發育……….………………………….……….…………..…………..….54 表7. 0~28 日齡雛鵝盲腸內容物中纖維素酶活性之發育…..... …….…. 56 表8. 0〜28日齡雛鵝小腸絨毛長度、寬度、周長及面積之發育.. ……....65 表9. 0〜28日齡雛鵝小腸道腺窩、肌肉層深度及絨毛高度/寬度、絨毛高度/腺窩深度比例之發育…….………………...….…………… ….…66 表10. 雛鵝小腸腸道型態各項參數對日齡之迴歸...........………. .. …...…67 表11. 試驗飼糧組成…………....….……………………..……….. . ..….…75 表12. 不同飼糧蛋白質含量對0~4週齡雛鵝採食量及生長性狀之影響…78 表13. 不同飼糧蛋白質含量對0~4週齡雛鵝砂囊及腺胃重量之影響…...83 表14. 不同飼糧蛋白質含量對0~4週齡雛鵝肝臟及胰臟重量之影響..… 84 表15. 不同飼糧蛋白質含量對0~4週齡雛鵝十二指腸及空腸重量之影響…………………………….….…………………………….…… 88 表16. 不同飼糧蛋白質含量對0~4週齡雛鵝迴腸及小腸重量之影響..… 89 表17. 不同飼糧蛋白質含量對0~4週齡雛鵝十二指腸及空腸長度之影響…………….……………. ….………………. …….…..…………90 表18. 不同飼糧蛋白質含量對0~4週齡雛鵝迴腸及小腸長度之影響……..………………………….…………….…………………… 91 表19. 不同飼糧蛋白質含量對0~4週齡雛鵝腺胃黏膜中胃蛋白酶活性之影響……….…………….……………………. ……. …….…..…….… 93 表20. 不同飼糧蛋白質含量對0~4週齡雛鵝胰臟胰蛋白酶與胰凝乳蛋白酶活性之影響………….…………………………………………….… 97 表21. 不同飼糧蛋白質含量對0~4週齡雛鵝十二指腸黏膜及內容物胰蛋白酶活性之影響……….……………........... ……. ……...................… 99 表22. 不同飼糧蛋白質含量對0~4週齡雛鵝十二指腸黏膜及內容物胰.凝乳蛋白酶活性之影響……………….….. ……. …….……..…..…..100 表23. 不同飼糧蛋白質含量對0~4週齡雛鵝空迴腸黏膜及內容物胰蛋白酶活性之影響………………….…………………. …….…….……. .103 表24. 不同飼糧蛋白質含量對0~4週齡白羅曼雛鵝空迴腸黏膜及內容物胰凝乳蛋白酶活性之影響……..…….….………. …….……….....…104 表25. 試驗飼糧組成………..……………………….……………..………110 表26. 不同飼糧蛋白質來源對0~4週齡雛鵝採食量及生長性狀之影響.113 表27. 不同飼糧蛋白質來源對0~4週齡雛鵝砂囊及腺胃重量之影響….116 表28. 不同飼糧蛋白質來源對0~4週齡雛鵝肝臟及胰臟重量之影響…117 表29. 不同飼糧蛋白質來源對0~4週齡雛鵝小腸各部位重量之影響…120 表30. 不同飼糧蛋白質來源對0~4週齡雛鵝小腸各部位長度之影響…121 表31. 不同飼糧蛋白質來源對0~4週齡雛鵝小腸重量及長度之影響…122 表32. 不同飼糧蛋白質來源對0~4週齡雛鵝腺胃黏膜中胃蛋白酶活性之影響……..…………………..…………………………..………...……124 表33. 不同飼糧蛋白質來源對0~4週齡雛鵝胰臟胰蛋白酶及胰凝乳蛋白酶活性之影響……………………….………………………..….……126 表34. 不同飼糧蛋白質來源對0~4週齡雛鵝十二指腸黏膜及內容物胰蛋白酶活性之影響……………..……….……………………….………130 表35. 不同飼糧蛋白質來源對0~4週齡雛鵝十二指腸黏膜及內容物胰凝乳蛋白酶活性之影響..……………….………………..………..…… 131 表36. 不同飼糧蛋白質來源對0~4週齡雛鵝空迴腸黏膜及內容物胰蛋白酶活性之影響…………………….………. ……...….……….……… 132 表37. 不同飼糧蛋白質含量對0~4週齡白羅曼雛鵝空迴腸黏膜及內容物胰凝乳蛋白酶活性之影響………..…………….….……….…………13

    Studies on the calcium requirements for growing stage (0 to 8 weeks old) of Taiwan country chicken

    No full text
    本試驗之目的,乃在探討日糧中不同鈣含量對臺灣土雞0-8 周齡生長、骨骼及血液性 狀的影響,藉以作為建立臺灣土雞0-4 周齡及5-8 周齡二個生長階段鈣需要量之參考 。 試驗憐只分別採用中興大學畜牧學系所育成之B×L 及 B×D×L 品系臺灣土雞,進 行 0-4周齡及 5-8周齡之試驗,試驗採完全逢機區集設計 (Randomized Complete B- lock Design)。 0-4周齡試驗日糧區分為六種不同鈣含量之處理組,分別為 0.4,0.6 0.8,1.0, 1.2和 1.4% 等六種處理組,有效磷各處理組均為0.4%。 5-8周齡之試驗雞 隻於 0-4周齡育雛期間均飼予相同之0-4 周齡之推薦鈣含量日糧( 日糧鈣含量0.85% ,有效磷為0.4%) ,自5 周齡開始試驗日糧區分為0.3, 0.5,0.7,0.9,1.1及 1.3% 等 六種不同鈣含量,有效磷亦為0.4%。二階段試驗各處理組均重複四次,以欄為試驗單 位,每欄雞隻24隻,公母各半,共使用1152隻雛雞,採平飼飼養。 本試驗結果,經斷線法統計分析,在生長性狀方面,於0-4 周齡階段以只日增重為指 標時鈣最低需要量為0.85% ,飼料轉換率為指標時則為0.7%。而 5-8周齡階段以隻日 增重為指標時為0.7%,飼料轉換率為指標時為0.68% 。 在骨骼性狀方面,於0-4 周齡階段以骨骼灰分含量為指標時鈣最低需要量為0.95% , 灰分百分比為指標時為0.94% ,而骨骼鈣量為指標時為1.06% 。而5-8 周齡階段以骨 骼灰分含量為指標時為0.95% ,骨骼灰分百分比為指標時為0.94% 骨骼鈣量為指標時 1.06% 。綜合上列之試驗結果顯示0-4 周齡階段就生長性狀而言,於有效磷0.4%時日 糧鈣含量之推薦量為 0.7-0.85%,就骨骼性狀而言則 0.85-0.98% 。5-8 周齡階段, 於有效磷0.4%時,在生長性狀方面,日糧鈣之推薦量為 0.68-0.7%,在骨骼性狀方面 則為 0.94-1.06%
    corecore