2 research outputs found

    The Study of Piscatorial Negotiations Between Taiwan And Japan

    No full text
    台日漁業糾紛由來已久,不僅影響漁民生計至鉅,亦是政府對外主權宣示的指標性意義。國內各界對此漁權談判殷望甚切,尤其是漁場是漁民的命脈,絕對不容失去的國土,而日方並無共享漁場的意願。 筆者在此,深入了解並作分析台日兩國從觀點到處理態度,解決問題的策略,由談判理論角度去看整個台日漁權談判之發展始末。 研究結果發現,這些談判本質及政府立場堅決程度,採用的策略是決定整個談判成敗的關鍵。除此之外亦希望本文提供對台日漁權談判的諸多了解。The Taiwan and Japan Piscatorial Power dispute is long-standing. It not only greatly affects the fishermen's livelihood , also the represents significance declared by the government foreign sovereignty. The domestic party has great hope in this Piscatorial Power Negotiations, in particular the Piscatorial is fisherman''s life, does not allow to lose the territory, but the Japanese side does not wish to share the fishery. The author analyzes both countries from the viewpoint to the processing attitude deeply, solves the question strategy, looks at development of Taiwan and Japan Piscatorial power negotiations from beginning to end by the negotiations theory. The research result discovered that these negotiations essence and the government's firm position, the strategy is affected the negotiations success or failure. In addition, also hoped that this article provides many understandings to Taiwan and Japan Piscatorial power negotiations.第一章 緒論 第一節 研究動機………………………………………………………1 第二節 研究目的………………………………………………………3 第三節 研究問題………………………………………………………5 第四節 研究方法………………………………………………………6 第五節 研究架構………………………………………………………8 第六節 章節安排 ……………………………………………………11 第二章 文獻回顧 第一節 談判之研究途徑 ……………………………………………13 第二節 國際海洋法 …………………………………………………22 第三節 日本佔領釣魚台策略及法理依據分析 ……………………28 第三章 台、日兩國漁權爭議之發展 第一節 台日兩國政府之間釣魚台爭端沿革 ………………………34 第二節 台日兩國政府、民間立場及影響力 ………………………41 第三節 歷次台日兩國漁權談判過程 ………………………………46 第四章 二階賽局理論之談判分析 第一節 台日漁權談判之理論適用性 ………………………………62 第二節 前十五次雙方政府談判模式 ………………………………63 第三節 台日雙方談判的結構分析 …………………………………66 第伍章 結論與建議. 第一節 研究發現 ……………………………………………………75 第二節 政策建議與省 ………………………………………………77 參考書目 ………………………………………………………………84 圖 表 目 次 圖 1-1 中華民國第一批領海基線、領海及鄰接區外界圖…………4 圖 1-2 二階談判分析之圖形…………………………………………9 圖 3-1 台、日雙方對釣魚台群島名稱對照圖………………………38 圖3-2 台、日雙方不同認定之中線位置圖 …………………………52 圖 3-3 台日漁業談判爭執區域圖 ………………………………… 54 圖 4-1台日兩國漁權二階談判模式 …………………………………63 圖 4-2台日兩國漁權二階談判結構特性 ……………………………66 表 3-1 歷次台日漁業會談時間地點一覽 …………………………47 表 3-2 台日漁權前十四次談判內容整 ……………………………49 表 3-3 台日漁權第十五次談判內容整 …………………………57 表 3-4 台日雙方歷屆爭執焦點 ……………………………………59 表 3-5 釣魚台問題三地政府、民間立場態度 ……………………60 表 4-1 台日漁權談判面向歸屬表 …………………………………6

    Applications of Tree-Shape Structures on Peer-to-Peer and Wireless Ad hoc Networks

    No full text
    「樹狀結構」的優點在於有條理並且層次分明,且資料之間可藉由分支來組成階層式關係。尤其,在網路結構中,樹型結構可集中式控制網路,如此便可易於隔離故障節點,規模也易於擴展,且維護成本也較低。 點對點覆蓋式網路廣泛地運用於分散式系統,其中,節點搜尋目標物件所需的跳躍數是點對點網路的基本搜尋成本,而放置儲存點可以有效地降低整個系統的前述成本,因此如何部署儲存點以盡可能地減少儲存點數目便成為點對點網路的關鍵問題。在此論文中,我們先探索隨機點對點網路Symphony的這個核心問題。具體說明,我們就總跳躍數目而言對最佳儲存點的放置進行隨機分析,並提出最佳儲存點放置演算法以對該議題進行模擬研究。而理論和實驗的結果都表明,Symphony中最佳儲存點放置的位置在識別空間中不一定是最接近目標節點。因此,基於這些結果,我們評估一個現有的簡單但實驗上有效的儲存點放置策略,該策略確實在最接近目標節點的節點上分配儲存點,以提供設計適用於真實世界之Symphony網路的更有效策略的一些方針。此外,在本論文中,我們也正式證明對於完整的確定點對點網路Chord和許多非完全Chord的網路,由於它們的確定性結構,我們可以將儲存點安排於識別空間中最接近目標的節點,以最大限度的減少所有節點在搜尋目標節點期間之到達儲存點所需的總跳躍數。 另一方面,由於節點的移動,加入和離開,其所形成的無線網路拓撲將不斷變化。因此,如何使移動節點形成一智慧網路系統便是一個重要的研究問題。尤其,網路系統中節點之間的訊息交換可以透過群播樹結構進行,且根節點也可以從此結構中收集所有節點的訊息。因此,本論文提出一演算法來為行動網路建構高效率的分散式群播樹結構,該演算法可以根據節點間傳播之訊息封包上所攜帶的最新拓撲資訊來持續調整群播樹。此外,在所有可能的路由路徑中,將動態選擇權重最低的路徑,以提高整體系統訊息的吞吐量。上述的技術可以應用於包括坦克、裝甲車輛和運輸車輛等軍用車輛所形成的智慧網路系統,透過該網路,戰場上的快速變化情況便可以立即傳回伺服器端供指揮官參考。 最後,對於許多分散式應用而言,分散式觸發計數(DTC)是一個基本的建構區塊,該問題是在整個系統收到預定數量的觸發時引發警報,且文獻中已經提出數種演算法來解決DTC問題。不幸的是,這些現有的演算法都假設在網路中沒有行程離開、加入和移動等事件,換句話說,它們只適用於靜態網路。而對於具有不斷變化拓撲的動態網路而言,上述假設是不實際的。在本論文中,我們研究動態網路的DTC問題,並介紹一沒有任何全域假設的分散式演算法。此外,我們進一步提出一訊息更加有效的方法,以降低上述演算法的訊息複雜度,而這種方法只需要一額外的必要條件,即所有行程都事先知道計算中涉及的行程數量上限。The advantage of tree structures is that they are hierarchical and organized. Moreover, the relationship between data can be formed into a hierarchy by branching. Particularly, among network structures, the tree structure can control the network in a centralized manner, enjoying the advantages that faulty nodes are easily isolated, scales are easy to expand, and the cost required to maintain the network is low. Peer-to-peer (P2P) overlay networks are widely employed in distributed systems. Furthermore, the number of hops required by a node for searching an object is the fundamental search cost of a P2P network. Seeing that placing replicas can efficiently reduce such a cost of the whole system, how to deploy replicas to reduce it as much as possible becomes a critical problem of P2P networks. In this thesis, we first investigate this center problem for the randomised P2P network Symphony. Specifically, we present a stochastic analysis on optimal replica placements, in terms of number of total hops, as well as proposing an optimal replica placement algorithm to perform a simulation study on this issue. Both the theoretical and experimental results show that locations of optimal replica placements in Symphony are not necessarily closest to the target node in the identifier space. Hence, based on these results, we evaluate one existing simple but experimentally efficient replica placement strategy, which exactly allocates replicas at nodes closest to the target node, to provide some guidelines on designing more efficient strategy applicable to the real-world Symphony networks. Furthermore, in this thesis, we formally demonstrate that for a complete deterministic P2P network Chord and many non-complete Chord ones, due to their deterministic structures, we can allocate replicas to nodes closest to the target in the identifier space to maximize the reduction in the total number of hops required by all nodes to reach a copy of the object during the search heading to the target node. On the other hand, due to nodes moving, joining and leaving, the wireless network topology formed by them will continuously change. Hence, how to make moving nodes to form a smart networking system is an important research issue. Particularly, the information exchange between nodes in a networking system can be performed via a multicast tree structure, and the root node can collect information from all the nodes via the structure. So in this thesis, an algorithm is proposed to build an efficient distributed multicast tree construction algorithm for a mobile network. Such a multicast tree can be continually adjusted according to the latest topology information carried on message packets disseminated among nodes. In addition, in all possible routing paths, a path with the lowest weight will be dynamically selected to improve the overall system messaging throughput. The above technique can be applied to make military vehicles form a smart networking system, including tanks, armored vehicles and transport vehicles, etc. Through this network, the fast-changing situation of the battle field can be immediately sent back to the server for the commander to refer to. Finally, for many distributed applications, Distributed Trigger Counting (DTC) problem is a basic building block. When the entire system receives a predefined number of triggers, such a problem is to raise an alarm. There have been several algorithms proposed in the literature to solve the DTC problem. Unfortunately, these existing algorithms are all under the assumption that there is no event regarding process leaving, joining and moving in the network. Namely, they can be only applicable to static networks. For dynamic networks with continually changing topology, the aforementioned assumption is not practical. In this thesis, we investigate the DTC problem for dynamic networks and introduce a distributed algorithm without any global assumption. In addition, we further propose a more message-efficient method in order to reduce the message complexity of the above algorithm. This one requires only an extra requirement that all processes have known ahead the upper bound on the number of processes involved in the computation.誌謝......... i 摘要........ ii Abstract.. iv Table of Contents vi List of Tables viii List of Figures ix List of Symbols and Notations xi Chapter 1. Introduction 1 1.1 Optimal Replica Placement for Symphony 1 1.2 Optimal Replica Placement for Chord 2 1.3 A Multicast-Tree Construction Algorithm 4 1.4 On The Distributed Trigger Counting Problem for Dynamic Networks 5 1.5 Organization 7 Chapter 2. Optimal Replica Placement for Symphony P2P Networks 8 2.1 Introduction 8 2.2 Preliminaries 9 2.2.1 Symphony P2P Network 9 2.2.2 Existing Replica Placement Strategy 11 2.3 Optimal Replica Placement for Symphony 11 2.3.1 Stochastic Analysis 12 2.3.2 Optimal Replica Placement Algorithm 15 2.4 Simulation Study 21 2.5 Summary 24 Chapter 3. Optimal Replica Placement for Chord P2P Networks 26 3.1 Introduction 26 3.2 Chord Networks 26 3.3 Demonstration for Optimal Replica Placements 27 3.3.1 Simple Replica Placement Strategy 28 3.3.2 Minimum Number of Total Lookup Hops 28 3.3.3 Optimality of Simple Strategy 35 3.4 Simulation Study 39 3.5 Summary 39 Chapter 4. A Multicast-Tree Construction Algorithm for Dynamic Networks 41 4.1 Introduction 41 4.2 The Multicast Routing Protocol 42 4.3 The Method of Establishing Multicast Tree 45 4.3.1 Control Message 45 4.3.2 Operating Procedures 47 4.3.3 Weight Calculation 50 4.4 The Experimental Results 51 4.4.1 Static Initial 52 4.4.2 Dynamic Process 54 4.5 Summary 57 Chapter 5. Two DTC Algorithms for Dynamic Networks 58 5.1 Introduction 58 5.2 Preliminaries 58 5.2.1 Dynamic Network Model 59 5.2.2 Definition of DTC Problem 59 5.3 Dynamic Intuitive Algorithm 60 5.4 Dynamic Improved Algorithm 65 5.5 Simulation Experiments 70 5.6 Summary 72 Chapter 6. Conclusions and Future Works 76 References 78 List of Publications 8
    corecore