2 research outputs found

    Optical Design and Simulation of High-Performance UV LED Exposure System

    No full text
    近年來由於環保及節能意識日漸抬頭,歐美日等先進國家逐漸重視這議題,其中LED具有省電、無汞汙染等優點,可以用來取代傳統的白熾燈及日光燈,因此提升LED的效率為大家努力的方向。 曝光技術於業界展逾30年,不僅廣泛應用於半導體產業,亦係世界各國極力發展的項目。然而國內對此發展相對落後,且多數目前還是採用傳統紫外光高壓汞燈做為發光源。而傳統紫外光高壓汞燈缺點頗多,例如:波長範圍寬、啟動時間長、耗能且更換燈泡成本較為昂貴…等。因此,針對此問題,本論文提出以UV LED作為光源,明確訂定其光利用率、不均勻度、尺寸規格及工作距離,藉由本研究徹底了解曝光系統各光學元件間參數之相互關係與影響,並利用軟體設計光源模型與曝光系統架構,所得之照度結果不均勻度可降至2 %,已低於一般5%之水準,且光利用率達40%之結果,成功達到原先設定之目標。The developed nations lately emphasize the concepts of energy saving and environmental protection; therefore LED gains much attention due to its advantages, such as no mercury pollution and low power consumption. Still the key issue is to improve the lighting efficiency. Exposure technology has been developed more than 30 years in the semiconductor industry. It is the most extensive technology at present, but it is also a target to be strongly developed around the world. However, the development is relatively weak in our country, and most of them are still using the traditional high-pressure mercury lamp as the light source Furthermore, the traditional high-pressure mercury lamp has many disadvantages as the following: wide wavelength range, the long start-up time, energy consumption and high cost ... etc. To solve these problems, this paper put forward an optical design that uses the UV LED as the light source, expressly stipulate the utilization rate of light, uniformity, size and working distance. Through this study, we could thoroughly understand the relationship and influence of the parameters of optical elements in this exposure system. we successfully achieved less than 2% of the nonuniformity and light utilization rate of 40%.摘要 i Abstract ii 目次 iii 表目次 vi 圖目次 viii 第一章 序論 1 一、前言 1 二、UV LED應用與技術簡介 3 三、研究動機與目的 5 四、文獻回顧 8 五、論文架構規劃 10 第二章 基本理論介紹 11 一、光學概述 11 (一) 折射率(Refractive index) 11 (二) 反射定律與折射定律(Reflection and Refraction) 12 (三) 全反射 (Total Internal Reflection) 13 (四) Lambertian餘弦定律 15 (五) 非成像均光器與成像均光器(Non-Imaging Homogenizer and Imaging Homogenizer) 17 (六) 成像公式 25 (七) 造鏡者公式 28 (八) 高斯公式 29 (九) 像差概述 30 二、輻射度學與光度學 32 (一) 光通量(Luminous Flux) 33 (二) 照度(Illuminance) 34 (三) 光強度(Luminous Intensity) 36 (四) 輝度(Luminance) 38 (五) 均齊度(Uniformity)檢測 39 第三章 光學模擬與設計 41 (一) 曝光系統模型建立 44 (二) 理論與模擬值驗證 44 (三) 不同擴散角度之光源於曝光系統設計與模擬分析 49 (四) 球面像差對曝光系統之影響 53 (五) 透鏡陣列排列個數於曝光系統之分析 56 (六) 不同類型之透鏡陣列於曝光系統之影響 58 (七) 光源元件設計 61 (八) 曝光系統整合與優化 69 第四章 結論與未來展望 76 參考文獻 7

    遠端監控型簡易三維光電式分級機制之初探與試製

    No full text
    In this study a sorting scheme with remote monitoring and operating function for fruits by using photoelectric elements is established. The hardware for this prototype is composed of a photointerrupter, measurement platforms, a data acquisition card, and a personal computer. The friendly human-machine interface software is a LabView program by which dominates the sorting algorithm, data flow and recording, and the parameter setting. The photointerrupter structure consists of a Wheatstone bridge and are lay along with other electronic components. One of the four resistors in the bridge is replaced by a photoresistor as the element of the measurement platforms. There are 48 Wheatstone Bridges were used and are divided into six groups in this study, Only three groups work for each direction scanning. The photoresistors are assembled in matrix on the measurement platform. The measurement platform is equipped with two light sources for vertical and lateral views respectively. The shadows of fruits tested on platform are recognized as their sizes from the photo resistances in photoresistors matrix. The signals equivalent to the photoresistance were captured into the computer by a DAQ interface (PCI-6024E). Then, a LabView program outfitted the sorting algorithm executes the sorting task. The sorting results will be exhibited both on monitor and by voice announcement simultaneously. Far-distance operation is also available on Internet. The on-line system performance shows that there are average long-axis error in 3.94%, average length error in 3.93% and average width-margin error in 3.31% for Fuji apples and average stalk height error in 3.06%, average longitude axis error in 4.13%, average width-margin error in 3.02% for peaches. The overall error will be within 5%. These validate this accomplished system.本研究利用光感測元件搭配電路設計製作可遠端監控型水果分級機制與硬體裝置。硬體部分由檢測電路,光遮斷感知器、量測平台、訊號擷取卡以及個人電腦所組成;軟體部分則包括以LabVIEW完成之操控程式以及分級預估演算法則。光遮斷感知器係由惠斯敦電橋與繼電器等電子元件所構成,其中電橋電路之四個電阻器由一個光敏電阻器與三個電阻器構成,利用電橋二邊電壓差以求出光敏電阻值的大小與變化。 本研究總共使用48組惠斯敦電橋,分成六群,每次僅三群電橋電路工作,其中光敏電阻器以矩陣形式配置的方式安裝在量測平台上。量測平台上方以及側方分別設有光源,依序照射待測水果使其產生陰影,由被水果投影所遮蔽之光敏電阻器電阻值的大小以及行數即可推知分級結果。而由光遮斷感知器送出的訊號,經由PCI-6024E訊號擷取卡進入電腦,配合LabVIEW程式演算與分析光遮斷感知器的訊號,估算水果之大小與分級結果,同步以螢幕顯示與語音方式呈現。整體分級作業亦可透過網際網路,直接由遠端及時監控。系統實驗室內之測試結果顯示,估算富士蘋果大小,平均蒂高誤差為3.94%,平均長度誤差為3.93%,平均寬度誤差為3.31%;而以水蜜桃為試材時,平均蒂高誤差為3.06%,平均長度誤差為4.13%,平均寬度誤差為3.02%。整體誤差均可維持在5%以內,顯示系統之有效及可應用性
    corecore