17,418 research outputs found

    Electron microscopy observations of the diversity of Ryugu organic matter and its relationship to minerals at the micro-to-nanoscale

    No full text
    International audienceTransmission electron microscopy analyses of Hayabusa2 samples show that Ryugu organic matter exhibits a range of morphologies, elemental compositions, and carbon functional chemistries consistent with those of carbonaceous chondrites that have experienced low-temperature aqueous alteration. Both nanoglobules and diffuse organic matter are abundant. Non-globular organic particles are also present, and including some that contain nanodiamond clusters. Diffuse organic matter is finely distributed in and around phyllosilicates, forms coatings on other minerals, and is also preserved in vesicles in secondary minerals such as carbonate and pyrrhotite. The average elemental compositions determined by energy-dispersive spectroscopy of extracted, demineralized insoluble organic matter samples A0107 and C0106 are C100N3O9S1 and C100N3O7S1, respectively, with the difference in O/C slightly outside the difference in the standard error of the mean. The functional chemistry of the nanoglobules varies from mostly aromatic C=C to mixtures of aromatic C=C, ketone C=O, aliphatic (CHn), and carboxyl (COOH) groups. Diffuse organic matter associated with phyllosilicates has variable aromatic C, ketone and carboxyl groups, and some localized aliphatics, but is dominated by molecular carbonate (CO3) absorption, comparable to prior observations of clay-bound organic matter in CI meteorites

    Habituation of the cold shock response: a systematic review and meta-analysis

    No full text
    Cold water immersion (CWI) evokes the life-threatening reflex cold shock response (CSR), inducing hyperventilation, increasing cardiac arrhythmias, and increasing drowning risk by impairing safety behaviour. Repeated CWI induces CSR habituation (i.e., diminishing response with same stimulus magnitude) after ~4 immersions, with variation between studies. We quantified the magnitude and coefficient of variation (CoV) in the CSR in a systematic review and meta-analysis with search terms entered to Medline, SportDiscus, PsychINFO, Pubmed, and Cochrane Central Register. Random effects meta-analyses, including effect sizes (Cohen’s d) from 17 eligible groups (k), were conducted for heart rate (HR, n=145, k=17), respiratory frequency (fR, n=73, k=12,), minute ventilation (Ve, n=106, k=10) and tidal volume (Vt, n=46, k=6). All CSR variables habituated (p<.001) with large or moderate pooled effect sizes: ∆HR -14(10) bt.min-1(d: -1.19); ∆fR -8(7) br.min-1 (d: -0.78,); ∆Ve, -21.3(9.8) L.min-1 (d: -1.64); ∆Vt -0.4(0.3) L -1. Variation was greatest in Ve (control vs comparator immersion: 32.5&24.7%) compared to Vt (11.8&12.1%). Repeated CWI induces CSR habituation potentially reducing drowning risk. We consider the neurophysiological and behavioural consequences

    In-process monitoring and direct simulation of Argon shielding gas and vapour dynamics to control laser-matter interaction in laser powder bed fusion additive manufacturing

    Get PDF
    Laser powder bed fusion (L-PBF) additive manufacturing (AM) enables the fabrication of parts with precise dimensional control, freedom of design and material properties similar to or better than those fabricated using traditional manufacturing approaches. AM quality control depends upon the fundamental of the laser-matter interaction during metal AM using L-PBF to exploit the potential use of the materials and process control. In this work, thermal-fluid dynamics in gas chamber experimentally and computationally is used to elucidate the interplay between vapour, liquid, and solid phases in L-PBF. It is revealed that the argon (Ar) shielding gas flow with varied inlet velocities by different nozzles has a pronounced effect to minimise the laser-fume interaction, resulting in the reduction in unstable metal vapour flow and enhancing laser absorptivity. In-process monitoring via high-speed visualisation has been used to understand the simultaneous gas plume dynamics as a result of vapourisation and subsequent laser-fume interaction, backed up by thermal-fluid flow simulation. Unfavourable process dynamics associated with unwanted defects such as lack of fusion can be avoided to improve process design and enhance process stability

    Simultaneous Content Determination of Mono-, Di-, and Fructo-oligosaccharides in Citrus Fruit Juices Using an FTIR-PLS Method Based on Selected Absorption Bands

    No full text
    A quantification method was developed to determine the sugar components, either following addition or enzymatic treatment, in citrus fruit juices containing additional fructo-oligosaccharides using midinfrared spectroscopy. For the quantification, we compared the results obtained by applying the simultaneous equation method, which uses very little wavenumber information, and the partial least squares (PLS) regression method, which requires a lot of wavenumber information. In order to prevent overfitting in the PLS method, we concentrated on reducing the amount of spectral data used in the analysis. The corresponding FTIR-PLS method led to an accurate quantification of the sugar contents, even in enzymatically treated orange juices with complicated compositions. The spectral data used for model calibration were significantly reduced by focusing on the absorption and assignment information of the sugar components. The RMSEs of Glc, Fru, Suc, GF2, and GF3 in enzyme-treated orange juice before and after spectral data reduction were 0.50, 0.46, 0.61, 0.74, and 0.61 g/L and 0.51, 0.49, 0.73, 0.86, and 0.61 g/L, respectively. The developed method could be easily implemented for practical applications, using a simple measuring instrument since only absorption information at the limited absorption bands is required

    Psychological aspects of rehabilitation nutrition: A position paper by the Japanese Association of Rehabilitation Nutrition (secondary publication)

    No full text
    Abstract Psychological aspects of rehabilitation nutrition affect physical, cognitive, and social rehabilitation nutrition. When depression is recognized, not only pharmacotherapy and psychotherapy, but also non‐pharmacological therapies such as exercise, nutrition, psychosocial, and other interventions can be expected to improve depression. Therefore, accurate diagnosis and intervention without overlooking depression is important. Psychological aspects of preventive rehabilitation nutrition is also important because depression can be partially prevented by appropriate exercise and nutritional management. Even in the absence of psychological negatives, increasing more psychological positives from a positive psychology perspective can be useful for both patients and healthcare professionals. Positive rehabilitation nutrition interventions can increase more psychological positives, such as well‐being, through cognitive‐behavioral therapy and mindfulness on their own, as well as through interventions on environmental factors. Consequently, physical, cognitive, and social positives are also expected to be enhanced

    Impact of liver cirrhosis, severity of cirrhosis and portal hypertension on the difficulty of laparoscopic and robotic minor liver resections for primary liver malignancies in the anterolateral segments

    Get PDF

    Rational Cationic Disorder in Hexagonal Cesium Tungsten Bronze Nanoparticles for Infrared Absorption Materials

    No full text
    Hexagonal cesium tungsten bronze (Cs0.33WO3) nanoparticles (NPs) have attracted attention for their potential applications in near-infrared (NIR) absorbing materials. However, the insufficient Cs doping in Cs0.33WO3 NPs has limited their NIR absorbing capabilities and practical stability. In this study, we demonstrate the transition pathway from intermediate W-defective Cs0.33WO3 NPs synthesized by flame spray pyrolysis to cationic (Cs, W)-disordered Cs0.33WO3 NPs prepared through appropriate heat treatments. Direct atomic observations reveal the basal shear and prismatic (Cs, W)-defective planes, which contributed to the disorder of full Cs doping in Cs0.33WO3 NPs. The obtained Cs0.33WO3 NPs with cationic disorder exhibited enhanced practical performance compared with conventional Cs0.33WO3 NPs. Therefore, the developed approach that regulates cationic disorder enables the rational design of defective metal oxides for a variety of applications, including NIR absorbing materials

    Correlations between each pair of leukocyte count and cardiometabolic risk factors in overall subjects.

    No full text
    Shown are Spearman’s rank correlation coefficients between each pair of leukocyte count and cardiometabolic risk factors in overall subjects. WHtR, waist-to-height ratio; MAP, mean arterial pressure. Asterisks denote significant correlations (**, p (DOCX)</p

    Diversification of cephalic shield shape and antenna in phyllosoma I of slipper and spiny lobsters (Decapoda: Achelata)

    Get PDF
    Slipper (Scyllaridae) and spiny (Palinuridae) lobsters show a complex life cycle with a planktonic larval phase, named phyllosoma. This unique larval form within Achelata (Decapoda) is characterized by a transparent dorsoventrally compressed body and a pair of antennae. This conspicuous morphology has been attributed to adaptive specialization of planktonic life. Early studies suggest that phyllosoma morphology has remained constant over the evolutionary history of Achelata, while recent evidence points out large morphological changes and that diversification of phyllosoma larvae is a consequence of radiation and specialization processes to exploit different habitats. Given the ecological and evolutive significance of phyllosoma, we used shape variation of the first phyllosoma stage (phyllosoma I) and a time-calibrated phylogeny of extant Achelata to study how diversification of phyllosoma I shape occurred along with the evolutionary history of Achelata. Our results show a conserved phyllosoma I with a pear-shaped cephalic shield and large antennae in spiny lobsters and older groups of slipper lobsters, yet highly specialized phyllosoma I with wide rounded cephalic shield and short antennae in younger groups of slipper lobsters. Analyses revealed two bursts of lineage diversification in mid and late history without a slowdown in recent times. Both bursts preceded large bursts of morphological disparity. These results joined with the allopatric distribution of species and convergence of phyllosoma I shapes between largely divergent groups suggest that diversification involves nonadaptive radiation processes. However, the correlation of a major direction of shape with the maximum distribution depth of adults and the occurrence of the second burst of diversification post-extinction of competitors within Achelata presuppose some ecological opportunities that might have promoted lineage and morphological diversification, fitting to the characteristic components of adaptive radiations. Therefore, we conclude that diversification of Achelata presents a main signature of nonadaptive radiation with some components of adaptive radiation

    Serum proteomic identification and validation of two novel atherosclerotic aortic aneurysm biomarkers, profilin 1 and complement factor D

    No full text
    Abstract Background Effective diagnostic biomarkers for aortic aneurysm (AA) that are detectable in blood tests are required because early detection and rupture risk assessment of AA can provide insights into medical therapy and preventive treatments. However, known biomarkers for AA lack specificity and reliability for clinical diagnosis. Methods We performed proteome analysis of serum samples from patients with atherosclerotic thoracic AA (TAA) and healthy control (HC) subjects to identify diagnostic biomarkers for AA. Serum samples were separated into low-density lipoprotein, high-density lipoprotein, and protein fractions, and the major proteins were depleted. From the proteins identified in the three fractions, we narrowed down biomarker candidates to proteins uniformly altered in all fractions between patients with TAA and HC subjects and evaluated their capability to discriminate patients with TAA and those with abdominal AA (AAA) from HC subjects using receiver operating characteristic (ROC) analysis. For the clinical validation, serum concentrations of biomarker candidates were measured in patients with TAA and AAA registered in the biobank of the same institute, and their capability for the diagnosis was evaluated. Results Profilin 1 (PFN1) and complement factor D (CFD) showed the most contrasting profiles in all three fractions between patients with TAA and HC subjects and were selected as biomarker candidates. The PFN1 concentration decreased, whereas the CFD concentration increased in the sera of patients with TAA and AAA when compared with those of HC subjects. The ROC analysis showed that these proteins could discriminate patients with TAA and AAA from HC subjects. In the validation study, these candidates showed significant concentration differences between patients with TAA or AAA and controls. PFN1 and CFD showed sufficient area under the curve (AUC) in the ROC analysis, and their combination further increased the AUC. The serum concentrations of PFN1 and CFD also showed significant differences between patients with aortic dissection and controls in the validation study. Conclusion PFN1 and CFD are potential diagnostic biomarkers for TAA and AAA and measurable in blood samples; their diagnostic performance can be augmented by their combination. These biomarkers may facilitate the development of diagnostic systems to identify patients with AA
    • 

    corecore