946 research outputs found

    Sex-dependent differences in left ventricular function and structure in chronic pressure overload

    Get PDF
    To evaluate gender-related differences in left ventricular (LV) structure and function in aortic stenosis, LV biplane cineangiography, micromanometry and endomyocardial biopsies were carried out in 56 patients with aortic stenosis and normal coronary arteries. Patients were divided into males (M: n= θ35), and females (F: n= θ21). Sixteen normal subjects 8 M, 8 F) served as haemodynamic controls. Control biopsy data were obtained from six pre-transplantation donor hearts (3 M and 3 F). LV systolic function was evaluated by ejection fraction and its relationship to mean systolic circumferential wall stress, diastolic function by the time constant of LV pressure decay, peak filling rates and passive myocardial stiffness constant. Biopsy samples were evaluated for interstitial fibrosis, muscle fibre diameter and volume fraction of myofibrils. In a subset of 27 consecutive patients, biopsy samples were evaluated with a morphometric-morphological method, for total collagen volume fraction, endocardial fibrosis and the extension and thickness of orthogonal collagen fibres (cross-hatching). In patients with aortic stenosis, aortic valve area, aortic valve resistance and mean aortic pressure gradient were comparable in males and females, whereas end-systolic and end-diastolic volumes were larger in males than females. Ejection fraction was lower (56%) in males than females (64%) (P 1.5 grade) was present in 11 males and four females with aortic stenosis (P<0.0I). An abnormal collagen architecture was present in 13114 males and 5113 females (V<0.002). In aortic stenosis, males have a depressed systolic function and abnormal passive elastic properties when compared to females with valve lesions of similar severity. Changes in collagen architecture may account, at least in part, for these difference

    Isotopic distribution of fission fragments in collisions between 238U beam and 9Be and 12C targets at 24 MeV/u

    Full text link
    Inverse kinematics coupled to a high-resolution spectrometer is used to investigate the isotopic yields of fission fragments produced in reactions between a 238U beam at 24 MeV/u and 9Be and 12C targets. Mass, atomic number and isotopic distributions are reported for the two reactions. These informations give access to the neutron excess and the isotopic distribution widths, which together with the atomic-number and mass distributions are used to investigate the fusion-fission dynamics.Comment: Submitted to PR

    Direct mass measurements of 19B, 22C, 29F, 31Ne, 34Na and other light exotic nuclei

    Full text link
    We report on direct time-of-flight based mass measurements of 16 light neutron-rich nuclei. These include the first determination of the masses of the Borromean drip-line nuclei 19^{19}B, 22^{22}C and 29^{29}F as well as that of 34^{34}Na. In addition, the most precise determinations to date for 23^{23}N and 31^{31}Ne are reported. Coupled with recent interaction cross-section measurements, the present results support the occurrence of a two-neutron halo in 22^{22}C, with a dominant ν2s1/22\nu2s_{1/2}^2 configuration, and a single-neutron halo in 31^{31}Ne with the valence neutron occupying predominantly the 2p3/2p_{3/2} orbital. Despite a very low two-neutron separation energy the development of a halo in 19^{19}B is hindered by the 1d5/22d_{5/2}^2 character of the valence neutrons.Comment: 5 page

    Cancer drug related cardiotoxicity during breast cancer treatment

    Get PDF
    Introduction: Breast cancer (BC) is the most common cancer in women. Although therapeutic armamentarium like chemotherapy, endocrine and target agents have increased survival, cardiovascular side effects have been observed. A comprehensive risk assessment, early detection and management of cardiac adverse events is therefore needed. Areas covered: In this review we focus on cardiotoxicity data deriving from Phase III randomized trials, systematic reviews and meta-analysis in BC patients. We provide insight into advances that have been made in the molecular mechanisms, clinical presentation and management of such adverse event. Expert opinion: Despite the large number of data from Phase III trials about cardiac events incidence, there are poor evidences for detection, monitoring and management of cardiotoxicity during BC treatment. Future cardiotoxicity-oriented clinical cancer research can help to predict the risk of cardiac adverse events and improve patients’ outcome. Multidisciplinary approach as well as integration of blood biomarkers with imaging will be desirable

    Nuclear Analyses for the Assessment of the Loads on the ITER Radial Neutron Camera In-Port System and Evaluation of Its Measurement Performances

    Get PDF
    The radial neutron camera (RNC) is a key ITER diagnostic system designed to measure the uncollided 14- and 2.5-MeV neutrons from deuterium-tritium (DT) and deuterium-deuterium (DD) fusion reactions, through an array of detectors covering a full poloidal plasma section along collimated lines of sight (LoS). Its main objective is the assessment of the neutron emissivity/alpha source profile and the total neutron source strength, providing spatially resolved measurements of several parameters needed for fusion power estimation, plasma control, and plasma physics studies. The present RNC layout is composed of two fan-shaped collimating structures viewing the plasma radially through vertical slots in the diagnostic shielding module (DSM) of ITER Equatorial Port 1 (EP01): the ex-port subsystem and the in-port one. The ex-port subsystem, devoted to the plasma core coverage, extends from the Port Interspace to the Bioshield Plug: it consists of a massive shielding unit hosting two sets of collimators lying on different toroidal planes, leading to a total of 16 interleaved LoS. The in-port system consists of a cassette, integrated inside the port plug DSM, containing two detectors per each of the six LoS looking at the plasma edges. The in-port system must guarantee the required measurement performances in critical operating conditions in terms of high radiation levels, given its proximity to the plasma neutron source. This article presents an updated neutronic analysis based on the latest design of the in-port system and port plug. It has been performed by means of the Monte Carlo MCNP code and provides nuclear loads on the in-port RNC during normal operating conditions (NOC) and inputs for the measurement performance analysis
    corecore