922 research outputs found

    Peripheral temperature gradient screening of high-Z impurities in optimised 'hybrid' scenario H-mode plasmas in JET-ILW

    Get PDF
    Screening of high-Z (W) impurities from the confined plasma by the temperature gradient at the plasma periphery of fusion-grade H-mode plasmas has been demonstrated in the JET-ILW (ITER-like wall) tokamak. Through careful optimisation of the hybrid-scenario, deuterium plasmas with sufficient heating power (greater than or similar to 32 MW), high enough ion temperature gradients at the H-mode pedestal top can be achieved for the collisional, neo-classical convection of the W impurities to be directed outwards, expelling them from the confined plasma. Measurements of the W impurity fluxes between and during edge-localised modes (ELMs) based on fast bolometry measurements show that in such plasmas there is a net efflux (loss) between ELMs but that ELMs often allow some W back into the confined plasma. Provided steady, high-power heating is maintained, this mechanism allows such plasmas to sustain high performance, with an average D-D neutron rate of similar to 3.2 x 10(16) s(-1) over a period of similar to 3 s, after an initial overshoot (equivalent to a D-T fusion power of similar to 9.4 MW), without an uncontrolled rise in W impurity radiation, giving added confidence that impurity screening by the pedestal may also occur in ITER, as has previously been predicted (Dux et al 2017 Nucl. Mater. Energy 12 28-35)

    Comparison of ion cyclotron wall conditioning discharges in hydrogen and helium in JET

    No full text

    Predictive JET current ramp-up modelling using QuaLiKiz-neural-network

    Get PDF
    This work applies the coupled JINTRAC and QuaLiKiz-neural-network (QLKNN) model on the ohmic current ramp-up phase of a JET D discharge. The chosen scenario exhibits a hollow T-e profile attributed to core impurity accumulation, which is observed to worsen with the increasing fuel ion mass from D to T. A dynamic D simulation was validated, evolving j, n(e), T-e, T-i, n(Be), n(Ni), and n(W) for 7.25 s along with self-consistent equilibrium calculations, and was consequently extended to simulate a pure T plasma in a predict-first exercise. The light impurity (Be) accounted for Z(eff) while the heavy impurities (Ni, W) accounted for Prad. This study reveals the role of transport on the Te hollowing, which originates from the isotope effect on the electron-ion energy exchange affecting T-i. This exercise successfully affirmed isotopic trends from previous H experiments and provided engineering targets used to recreate the D q-profile in T experiments, demonstrating the potential of neural network surrogates for fast routine analysis and discharge design. However, discrepancies were found between the impurity transport behaviour of QuaLiKiz and QLKNN, which lead to notable T-e hollowing differences. Further investigation into the turbulent component of heavy impurity transport is recommended

    Testing a prediction model for the H-mode density pedestal against JET-ILW pedestals