227 research outputs found

    Computational Approaches to Measuring the Similarity of Short Contexts : A Review of Applications and Methods

    Full text link
    Measuring the similarity of short written contexts is a fundamental problem in Natural Language Processing. This article provides a unifying framework by which short context problems can be categorized both by their intended application and proposed solution. The goal is to show that various problems and methodologies that appear quite different on the surface are in fact very closely related. The axes by which these categorizations are made include the format of the contexts (headed versus headless), the way in which the contexts are to be measured (first-order versus second-order similarity), and the information used to represent the features in the contexts (micro versus macro views). The unifying thread that binds together many short context applications and methods is the fact that similarity decisions must be made between contexts that share few (if any) words in common.Comment: 23 page

    Duluth at SemEval-2017 Task 6: Language Models in Humor Detection

    Full text link
    This paper describes the Duluth system that participated in SemEval-2017 Task 6 #HashtagWars: Learning a Sense of Humor. The system participated in Subtasks A and B using N-gram language models, ranking highly in the task evaluation. This paper discusses the results of our system in the development and evaluation stages and from two post-evaluation runs.Comment: 5 pages, to Appear in the Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval 2017), August 2017, Vancouver, B