264,073 research outputs found

    Diastereoselective Synthesis of Dihydroisoindolo[2,1‑a]quinolin-11- ones by Solvent-Free AMCell-SO3H‑Catalyzed Imino Diels−Alder/Intramolecular Amide Cyclization Cascade Reactions

    No full text
    Nineteen bioactive highly functionalized 6,6a-dihydroisoindolo[2,1-a]quinolin-11(5H)-one derivatives were easily prepared in good yield without solvent using catalytic amorphous milled cellulose sulfonic acid (AMCell-SO3H), substituted anilines, propenyl-phenols, and phthaldehydic acid. The cascade reaction gave high regioselectivity and diastereoselectivity.Departamento Administrativo de Ciencia, Tecnología e Innovación [CO] Colciencias5507-543-31904Programa: Bioprospección y desarrollo de ingredientes naturales para las industrias cosmética, farmacéutica y de productos de aseo con base en la biodiversidad colombianan

    Free-labeled nanoclay intracellular uptake tracking by confocal Raman imaging

    No full text
    Laponite is a nanoplatform that has been successfully used as a new biomaterial for drug delivery, tissue engineering and bioimaging at the nanoscale. In general, a deep knowledge of the mechanism interaction of the nanomaterial with biological components in a physiological environment is highly desirable for properly characterizing its therapeutic efficacy and toxicology. Up to know, the use of fluorescent dyes labelling both, the nanomaterial and cell components, has been a requirement to characterize the cell uptake and to visualize the entrance of the nanomaterial into the cytosol and the cell nucleus. The used of fluorophores usually perturb the physiological medium and can interfere in the nanomaterial cell interaction. A new Raman imaging methodology to track the uptake and internalization of Laponite nanoparticles into J774 macrophages line cells is presented in this work. The combination of Raman spectroscopy and confocal microscopy provides direct information about the localization of the nanoparticle into the cell, through its unique vibrational fingerprint without labelling or adding dyes, and taking advantage of the fact that Laponite and biological molecules bands can be clearly differentiated.We would like to thank IDIVAL for financial support, Projects N°NVAL16/17, INNVAL19/18 and NVAL18/07. CRL thanks the MINECO for the Juan de la Cierva Formación grant (ref. FJCI-2015-25306). This work has been supported by the Spanish MINECO, Instituto de Salud Carlos III, the European Union FEDER funds under Projects ref. PI16/00496 (AES 2016), PI19/00349 and DTS19/00033 (AES 2019). The authors are grateful to Dr F Madrazo and the Laser Microscopy Unit of the IDIVAL Institute for the use of the Confocal Raman Imaging Microscope

    A flash of polarized optical light points to an aspherical "cow"

    Full text link
    The astronomical transient AT2018cow is the closest example of the new class of luminous, fast blue optical transients (FBOTs). Liverpool Telescope RINGO3 observations of AT2018cow are reported here, which constitute the earliest polarimetric observations of an FBOT. At 5.7 days post-explosion, the optical emission of AT2018cow exhibited a chromatic polarization spike that reached ~7% at red wavelengths. This is the highest intrinsic polarization recorded for a non-relativistic explosive transient, and is observed in multiple bands and at multiple epochs over the first night of observations, before rapidly declining. The apparent wavelength dependence of the polarization may arise through depolarization or dilution of the polarized flux, due to conditions in AT~2018cow at early times. A second ``bump" in the polarization is observed at blue wavelengths at ~12 days. Such a high polarization requires an extremely aspherical geometry that is only apparent for a brief period (<1 day), such as shock breakout through an optically thick disk. For a disk-like configuration, the ratio of the thickness to radial extent must be ~10%.Comment: MNRAS Accepted, 10 pages, 8 figure

    Epidemiology of neuropathic pain:an analysis of prevalence and associated factors in UK Biobank

    Get PDF
    Abstract. Introduction:. Previous epidemiological studies of neuropathic pain have reported a range of prevalences and factors associated with the disorder. Objectives:. This study aimed to verify these characteristics in a large UK cohort. Methods:. A cross-sectional analysis was conducted of 148,828 UK Biobank participants who completed a detailed questionnaire on chronic pain. The Douleur Neuropathique en Quatre Questions (DN4) was used to distinguish between neuropathic pain (NeuP) and non-neuropathic pain (non-NeuP) in participants with pain of at least 3 months' duration. Participants were also identified with less than 3 months' pain or without pain (NoCP). Multivariable regression was used to identify factors associated with NeuP compared with non-NeuP and NoCP, respectively. Results:. Chronic pain was present in 76,095 participants (51.1%). The overall prevalence of NeuP was 9.2%. Neuropathic pain was significantly associated with worse health-related quality of life, having a manual or personal service type occupation, and younger age compared with NoCP. As expected, NeuP was associated with diabetes and neuropathy, but also other pains (pelvic, postsurgical, and migraine) and musculoskeletal disorders (rheumatoid arthritis, osteoarthritis, and fibromyalgia). In addition, NeuP was associated with pain in the limbs and greater pain intensity and higher body mass index compared with non-NeuP. Female sex was associated with NeuP when compared with NoCP, whereas male sex was associated with NeuP when compared with non-NeuP. Conclusion:. This is the largest epidemiological study of neuropathic pain to date. The results confirm that the disorder is common in a population of middle- to older-aged people with mixed aetiologies and is associated with a higher health impact than non-neuropathic pain

    Measurement of <math><mi>ϕ</mi></math>-meson production in <math><mrow><mi>Cu</mi><mo>+</mo><mi>Au</mi></mrow></math> collisions at <math><mrow><msqrt><msub><mi>s</mi><mrow><mi>N</mi><mi>N</mi></mrow></msub></msqrt><mo>=</mo><mn>200</mn></mrow></math> GeV and <math><mrow><mi mathvariant="normal">U</mi><mo>+</mo><mi mathvariant="normal">U</mi></mrow></math> collisions at <math><mrow><msqrt><msub><mi>s</mi><mrow><mi>N</mi><mi>N</mi></mrow></msub></msqrt><mo>=</mo><mn>193</mn></mrow></math> GeV

    No full text
    International audienceThe PHENIX experiment reports systematic measurements at the Relativistic Heavy Ion Collider of ϕ-meson production in asymmetric Cu+Au collisions at sNN=200GeV and in U+U collisions at sNN=193GeV. Measurements were performed via the ϕ→K+K− decay channel at midrapidity |η|&lt;0.35. Features of ϕ-meson production measured in Cu+Cu, Cu+Au, Au+Au, and U+U collisions were found to not depend on the collision geometry, which was expected because the yields are averaged over the azimuthal angle and follow the expected scaling with nuclear-overlap size. The elliptic flow of the ϕ meson in Cu+Au, Au+Au, and U+U collisions scales with second-order-participant eccentricity and the length scale of the nuclear-overlap region (estimated with the number of participating nucleons). At moderate pT, ϕ-meson production measured in Cu+Au and U+U collisions is consistent with coalescence-model predictions, whereas at high pT the production is in agreement with expectations for in-medium energy loss of parent partons prior to their fragmentation. The elliptic flow for ϕ mesons measured in Cu+Au and U+U collisions is well described by a (2+1)-dimensional viscous-hydrodynamic model with specific-shear viscosity η/s=1/4π

    SPOT1328 Meira Spit

    No full text
    Data in this folder are produced by a SoFarOcean Spotter wave buoy deployed along the south arm of the Great Salt Lake, near Antelope Island State Park from the period of July 13, 2021 through June 28, 2022, in relatively shallow water, approximately 1.6m. IMPORTANT NOTE: Water depths for #1328 (Miera Spit) started at ~1.7 m, but dropped rapidly to 0.9 m on July 15, 2021 and dropped further to ~0.4 m on August 17, 2021. The timing of these rapid water depth changes matches the timing of buoy location changes when the anchor was dragged inshore by waves. When buoy #1328 (Miera Spit) was retrieved at the end of the study period, it was partially beached with its ballast chain touching the bed. We surmised that data quality was suspect after the second abrupt change in water depth on August 17th, 2021 when the anchor was moved.https://scholarworks.uno.edu/salt_lake/1000/thumbnail.jp

    Pathways to achieving nature-positive and carbon–neutral land use and food systems in Wales

    No full text
    Land use and its management can play a vital role in carbon sequestration, but trade-offs may exist with other objectives including food security and nature recovery. Using an integrated model (the FABLE calculator), four pathways, co-created with colleagues at the Welsh Government, towards achieving climate and biodiversity targets in Wales were explored: status quo, improvements on current trends, land sparing and land sharing. We found that continuing as usual will not be sufficient to meet Wales’s climate and biodiversity targets. In contrast, the land use and agricultural sector became a net carbon sink in both the land sparing and land sharing pathways, through high afforestation targets, peatland restoration, reducing food waste and moving towards a healthier diet. Whilst both pathways released land for biodiversity, the gains were greater in the land sharing pathway, which was also less dependent on optimistic assumptions concerning productivity improvements. The results demonstrate that alternative approaches to achieving nature-positive and carbon–neutral land use and food systems may be possible, but they come with stringent and transformative requirements for policy changes, with an integrated approach necessary to maximise benefits for climate, food and nature

    Acceptability of neural stem cell therapy for cerebral palsy: survey of the Australian cerebral palsy community

    No full text
    Abstract Background Neural stem cells (NSCs) have the potential to engraft and replace damaged brain tissue, repairing the damaged neonatal brain that causes cerebral palsy (CP). There are procedures that could increase engraftment of NSCs and may be critical for efficacy, but hold notable risks. Before clinical trials progress, it is important to engage with the CP community to understand their opinions. The aim of this study was to determine the acceptability of NSC therapy for CP in the CP community. Methods Australian residents with CP and parents/carers of those with CP completed a questionnaire to determine their willingness to use NSCs from three sources (fetal, embryonic and induced pluripotent stem cells) and their willingness to undergo accompanying procedures (neurosurgery, immunosuppression) that carry potential risks. To further explore their views, participants also answered free text questions about their ethical concerns regarding the source of NSCs and their perceptions of meaningful outcomes following NSC treatment. Results In total, 232 responses were analyzed. Participants were willing to use NSCs from all three cell sources and were willing to undergo NSC therapy despite the need for neurosurgery and immunosuppression. Participants identified a range of outcome domains considered important following NSC treatment including gross motor function, quality of life, independence and cognitive function. Conclusions Hypothetical NSC therapy was acceptable to the Australian CP community. This study has identified important findings from the CP community which can be used to inform future NSC research, including the design of clinical trials which may help to increase recruitment, compliance and participant satisfaction

    A spatio-temporal framework for modelling wastewater concentration during the COVID-19 pandemic

    Get PDF
    The potential utility of wastewater-based epidemiology as an early warning tool has been explored widely across the globe during the current COVID-19 pandemic. Methods to detect the presence of SARS-CoV-2 RNA in wastewater were developed early in the pandemic, and extensive work has been conducted to evaluate the relationship between viral concentration and COVID-19 case numbers at the catchment areas of sewage treatment works (STWs) over time. However, no attempt has been made to develop a model that predicts wastewater concentration at fine spatio-temporal resolutions covering an entire country, a necessary step towards using wastewater monitoring for the early detection of local outbreaks. We consider weekly averages of flow-normalised viral concentration, reported as the number of SARS-CoV-2N1 gene copies per litre (gc/L) of wastewater available at 303 STWs over the period between 1 June 2021 and 30 March 2022. We specify a spatially continuous statistical model that quantifies the relationship between weekly viral concentration and a collection of covariates covering socio-demographics, land cover and virus associated genomic characteristics at STW catchment areas while accounting for spatial and temporal correlation. We evaluate the model’s predictive performance at the catchment level through 10-fold cross-validation. We predict the weekly viral concentration at the population-weighted centroid of the 32,844 lower super output areas (LSOAs) in England, then aggregate these LSOA predictions to the Lower Tier Local Authority level (LTLA), a geography that is more relevant to public health policy-making. We also use the model outputs to quantify the probability of local changes of direction (increases or decreases) in viral concentration over short periods (e.g. two consecutive weeks). The proposed statistical framework can predict SARS-CoV-2 viral concentration in wastewater at high spatio-temporal resolution across England. Additionally, the probabilistic quantification of local changes can be used as an early warning tool for public health surveillance