9,580 research outputs found

    Two new Probability inequalities and Concentration Results

    Full text link
    Concentration results and probabilistic analysis for combinatorial problems like the TSP, MWST, graph coloring have received much attention, but generally, for i.i.d. samples (i.i.d. points in the unit square for the TSP, for example). Here, we prove two probability inequalities which generalize and strengthen Martingale inequalities. The inequalities provide the tools to deal with more general heavy-tailed and inhomogeneous distributions for combinatorial problems. We prove a wide range of applications - in addition to the TSP, MWST, graph coloring, we also prove more general results than known previously for concentration in bin-packing, sub-graph counts, Johnson-Lindenstrauss random projection theorem. It is hoped that the strength of the inequalities will serve many more purposes.Comment: 3

    NNLO Corrections to the Polarized Drell-Yan Coefficient Function

    Full text link
    We present the full next-to-next-to-leading order (NNLO) corrections to the coefficient function for the polarized cross section dΔσ/dQd \Delta\sigma/d Q of the Drell-Yan process. We study the effect of these corrections on the process p+p→l+l−+‘X′p+p\to l^+l^-+`X' at an C.M. energy S=200GeV\sqrt{S}=200 GeV. All QCD partonic subprocesses have been included provided the lepton pair is created by a virtual photon, which is a valid approximation for a lepton pair invariant mass Q<50GeVQ<50 GeV. For this reaction the dominant subprocess is given by q+qˉ→γ∗+‘X′q+\bar q\to \gamma^*+`X' and its higher order corrections so that it provides us with an excellent tool to measure the polarized sea-quark densities.Comment: 5 pages, 5 figures, 7th DESY Workshop on Elementary Particle Theory, Loops and Legs in Quantum Field Theory, Zinnowitz, Germany, April 25-30, 200

    Aspects of practical implementations of PRAM algorithms

    Get PDF
    The PRAM is a shared memory model of parallel computation which abstracts away from inessential engineering details. It provides a very simple architecture independent model and provides a good programming environment. Theoreticians of the computer science community have proved that it is possible to emulate the theoretical PRAM model using current technology. Solutions have been found for effectively interconnecting processing elements, for routing data on these networks and for distributing the data among memory modules without hotspots. This thesis reviews this emulation and the possibilities it provides for large scale general purpose parallel computation. The emulation employs a bridging model which acts as an interface between the actual hardware and the PRAM model. We review the evidence that such a scheme can achieve scalable parallel performance and portable parallel software and that PRAM algorithms can be optimally implemented on such practical models. In the course of this review we presented the following new results: 1. Concerning parallel approximation algorithms, we describe an NC algorithm for findings an approximation to a minimum weight perfect matching in a complete weighted graph. The algorithm is conceptually very simple and it is also the first NC-approximation algorithm for the task with a sub-linear performance ratio. 2. Concerning graph embedding, we describe dense edge-disjoint embeddings of the complete binary tree with n leaves in the following n-node communication networks: the hypercube, the dc Bruijn and shuffle-exchange networks and the 2-dimcnsional mesh. In the embeddings the maximum distance from a leaf to the root of the tree is asymptotically optimally short. The embeddings facilitate efficient implementation of many PRAM algorithms on networks employing these graphs as interconnection networks. 3. Concerning bulk synchronous algorithmic, we describe scalable transportable algorithms for the following three commonly required types of computation; balanced tree computations. Fast Fourier Transforms and matrix multiplications

    Can Polarised Drell-Yan Shed More Light On The Proton Spin?

    Full text link
    We analyse polarised Drell-Yan process using the factorisation method and derive operator definitions for polarised parton distribution functions. We demonstrate that a factorisation analogous to that in the unpolarised Drell-Yan case holds in this process. We study the leading order gluonic contribution to the first moment of polarised Drell-Yan function and show that it is consistent with results obtained from polarised deep inelastic scattering.Comment: 12 page

    Multi-User Diversity vs. Accurate Channel State Information in MIMO Downlink Channels

    Full text link
    In a multiple transmit antenna, single antenna per receiver downlink channel with limited channel state feedback, we consider the following question: given a constraint on the total system-wide feedback load, is it preferable to get low-rate/coarse channel feedback from a large number of receivers or high-rate/high-quality feedback from a smaller number of receivers? Acquiring feedback from many receivers allows multi-user diversity to be exploited, while high-rate feedback allows for very precise selection of beamforming directions. We show that there is a strong preference for obtaining high-quality feedback, and that obtaining near-perfect channel information from as many receivers as possible provides a significantly larger sum rate than collecting a few feedback bits from a large number of users.Comment: Submitted to IEEE Transactions on Communications, July 200

    Structural Phase Stability in Fluorinated Calcium Hydride

    Full text link
    In order to improve the hydrogen storage properties of calcium hydride (CaH2), we have tuned its thermodynamical properties through fluorination. Using ab-initio total energy calculations based on density functional theory, the structural stability, electronic structure and chemical bonding of CaH2-xFx systems are investigated. The phase transition of fluorinated systems from orthorhombic to cubic structure has been observed at 18% fluorine doped CaH2. The phase stability analysis shows that CaH2-xFx systems are highly stable and the stability is directly correlating with their ionicity. Density of states (DOS) plot reveals that CaH2-xFx systems are insulators. Partial DOS and charge density analyses conclude that these systems are governed by ionic bonding. Our results show that H closer to F can be removed more easily than that far away from F and this is due to disproportionation induced in the bonding interaction by fluorination
    • …
    corecore