128 research outputs found
How Data Drive Early Word Learning: A Cross-Linguistic Waiting Time Analysis
The extent to which word learning is delayed by maturation as opposed to accumulating data is a longstanding question in language acquisition. Further, the precise way in which data influence learning on a large scale is unknownâexperimental results reveal that children can rapidly learn words from single instances as well as by aggregating ambiguous information across multiple situations. We analyze Wordbank, a large cross-linguistic dataset of word acquisition norms, using a statistical waiting time model to quantify the role of data in early language learning, building off Hidaka (2013). We find that the model both fits and accurately predicts the shape of childrenâs growth curves. Further analyses of model parameters suggest a primarily data-driven account of early word learning. The parameters of the model directly characterize both the amount of data required and the rate at which informative data occurs. With high statistical certainty, words require on the order of ⌠10 learning instances, which occur on average once every two months. Our method is extremely simple, statistically principled, and broadly applicable to modeling data-driven learning effects in development
Logical word learning: The case of kinship
We examine the conceptual development of kinship through the lens of program induction. We present a computational model for the acquisition of kinship term concepts, resulting in the first computational model of kinship learning that is closely tied to developmental phenomena. We demonstrate that our model can learn several kinship systems of varying complexity using cross-linguistic data from English, Pukapuka, Turkish, and Yanomamö. More importantly, the behavioral patterns observed in children learning kinship terms, under-extension and over-generalization, fall out naturally from our learning model. We then conducted interviews to simulate realistic learning environments and demonstrate that the characteristic-to-defining shift is a consequence of our learning model in naturalistic contexts containing abstract and concrete features. We use model simulations to understand the influence of logical simplicity and childrenâs learning environment on the order of acquisition of kinship terms, providing novel predictions for the learning trajectories of these words. We conclude with a discussion of how this model framework generalizes beyond kinship terms, as well as a discussion of its limitations
Recommended from our members
Inferring priors in compositional cognitive models
We apply Bayesian data analysis to a structured cognitivemodel in order to determine the priors that support humangeneralizations in a simple concept learning task. We mod-eled 250,000 ratings in a ânumber gameâ experiment wheresubjects took examples of a numbers produced by a program(e.g. 4, 16, 32) and rated how likely other numbers (e.g. 8vs. 9) would be to be generated. This paper develops a dataanalysis technique for a family of compositional âLanguage ofThoughtâ (LOT) models which permits discovery of subjectsâprior probability of mental operations (e.g. addition, multi-plication, etc.) in this domain. Our results reveal high cor-relations between model mean predictions and subject gener-alizations, but with some qualitative mismatch for a stronglycompositional prior
The Goldilocks Effect: Human Infants Allocate Attention to Visual Sequences That Are Neither Too Simple Nor Too Complex
Human infants, like immature members of any species, must be highly selective in sampling information from their environment to learn efficiently. Failure to be selective would waste precious computational resources on material that is already known (too simple) or unknowable (too complex). In two experiments with 7- and 8-month-olds, we measure infantsâ visual attention to sequences of events varying in complexity, as determined by an ideal learner model. Infantsâ probability of looking away was greatest on stimulus items whose complexity (negative log probability) according to the model was either very low or very high. These results suggest a principle of infant attention that may have broad applicability: infants implicitly seek to maintain intermediate rates of information absorption and avoid wasting cognitive resources on overly simple or overly complex events
Recommended from our members
Multi-directional mappings in the minds of the Tsimaneâ:Size, time, and number on three spatial axes
From early in life, people implicitly associate time, number,and other abstract conceptual domains with space. Accord-ing to the Generalized Magnitude System proposal, these men-tal mappings reflect a common neural system for represent-ing various magnitudes, and share a common spatial organiza-tion. In a test of this proposal, here we measured mappings ofsize, time, and number in the Tsimaneâ, an indigenous Ama-zonian group with few of the cultural practices (like readingand math) that spatialize size, time, and number in the expe-rience of industrialized adults. On three spatial axes, the Tsi-maneâ systematically arranged imagistic stimuli according totheir magnitudes, but they showed no directional preferencesoverall and individuals often mapped different domains in op-posite directions. The results are inconsistent with predictionsof the Generalized Magnitude System proposal but can be ex-plained by Hierarchical Mental Metaphor Theory, accordingto which mental mappings initially reflect a set of correlationsobservable in the natural world
Modeling infant object perception as program induction
Infants expect physical objects to be rigid and persist through space and
time and in spite of occlusion. Developmentists frequently attribute these
expectations to a "core system" for object recognition. However, it is unclear
if this move is necessary. If object representations emerge reliably from
general inductive learning mechanisms exposed to small amounts of environment
data, it could be that infants simply induce these assumptions very early.
Here, we demonstrate that a domain general learning system, previously used to
model concept learning and language learning, can also induce models of these
distinctive "core" properties of objects after exposure to a small number of
examples. Across eight micro-worlds inspired by experiments from the
developmental literature, our model generates concepts that capture core object
properties, including rigidity and object persistence. Our findings suggest
infant object perception may rely on a general cognitive process that creates
models to maximize the likelihood of observationsComment: 3 pages, 3 figures, accepted at CCN conference 202
The communicative function of ambiguity in language
We present a general information-theoretic argument that all efficient communication systems will be ambiguous, assuming that context is informative about meaning. We also argue that ambiguity allows for greater ease of processing by permitting efficient linguistic units to be re-used. We test predictions of this theory in English, German, and Dutch. Our results and theoretical analysis suggest that ambiguity is a functional property of language that allows for greater communicative efficiency. This provides theoretical and empirical arguments against recent suggestions that core features of linguistic systems are not designed for communication.National Science Foundation (U.S.) (Grant 0844472
- âŠ