5,579 research outputs found

    The ASCA Spectrum of the Vela Pulsar Jet

    Get PDF
    ROSAT observations of the Vela pulsar and its surroundings revealed a collimated X-ray feature almost 45' in length (Markwardt & Ogelman 1995), interpreted as the signature ``cocoon'' of a one-sided jet from the Vela pulsar. We report on a new ASCA observation of the Vela pulsar jet at its head, the point where the jet is believed to interact with the supernova remnant. The head is clearly detected, and its X-ray spectrum is remarkably similar to the surrounding supernova remnant spectrum, extending to X-ray energies of at least 7 keV. A ROSAT+ASCA spectrum can be fit by two-component emission models but not standard one-component models. The lower energy component is thermal and has a temperature of 0.29+/-0.03 keV (1 sigma); the higher energy component can be fit by either a thermal component of temperature ~4 keV or a power law with photon index ~2.0. Compared to the ROSAT-only results, the mechanical properties of the jet and its cocoon do not change much. If the observed spectrum is that of a hot jet cocoon, then the speed of the jet is at least 800 km s^-1, depending on the angle of inclination. The mechanical power driving the jet is >10^36 erg s^-1, and the mass flow rate at the head is > 10^-6 M_sun yr^-1. We conclude that the jet must be entraining material all along its length in order to generate such a large mass flow rate. We also explore the possibility that the cocoon emission is synchrotron radiation instead of thermal.Comment: 12 pages, LaTeX in AAS v4.0 preprint style, two PS figures, accepted for publication in the ApJ Letter

    Radio Emission from the Composite Supernova Remnant G326.3-1.8 (MSH15-56)

    Get PDF
    High resolution radio observations of the composite supernova remnant (SNR) G326.3-1.8 or MSH 15-56 with the Australia Telescope Compact Array show details of both the shell and the bright plerion which is offset about 1/3 of the distance from the center of the SNR to the shell. The shell appears to be composed of thin filaments, typical of older shell SNRs. The central part of the elongated plerion is composed of a bundle of parallel ridges which bulge out at the ends and form a distinct ring structure on the northwestern end. The magnetic field with a strength of order 45 microGauss, is directed along the axis of the ridges but circles around the northwestern ring. This plerion is large and bright in the radio but is not detected in x-ray or optical wavelengths. There is, however, a faint hard x-ray feature closer to the shell outside the plerion. Perhaps if the supernova explosion left a rapidly moving magnetar with large energy input but initially rapid decay of both relativistic particles and magnetic field, the observed differences with wavelength could be explained.Comment: 15 pages, 10 figures, accepted by Ap

    IC 4406: a radio-infrared view

    Full text link
    IC 4406 is a large (about 100'' x 30'') southern bipolar planetary nebula, composed of two elongated lobes extending from a bright central region, where there is evidence for the presence of a large torus of gas and dust. We show new observations of this source performed with IRAC (Spitzer Space Telescope) and the Australia Telescope Compact Array. The radio maps show that the flux from the ionized gas is concentrated in the bright central region and originates in a clumpy structure previously observed in H_alpha, while in the infrared images filaments and clumps can be seen in the extended nebular envelope, the central region showing toroidal emission. Modeling of the infrared emission leads to the conclusion that several dust components are present in the nebula.Comment: 22 pages, 7 figures, accepted for publication in The Astrophysical Journal; v.2 has changes in both figures and content; preprint forma

    The Distance to the Vela Supernova Remnant

    Get PDF
    We have obtained high resolution Ca II and Na I absorption line spectra toward 68 OB stars in the direction of the Vela Supernova Remnant. The stars lie at distances of 190 -- 2800 pc as determined by Hipparcos and spectroscopic parallax estimations. The presence of high velocity absorption attributable to the remnant along some of the sight lines constrains the remnant distance to 250+/-30 pc. This distance is consistent with several recent investigations that suggest that the canonical remnant distance of 500 pc is too large.Comment: To be published in The Astrophysical Journal Letters Figure 1 y-axis labels correcte

    Radio Observations of the Supernova Remnant Candidate G312.5-3.0

    Full text link
    The radio images from the Parkes-MIT-NRAO (PMN) Southern Sky Survey at 4850 MHz have revealed a number of previously unknown radio sources. One such source, G312.5-3.0 (PMN J1421-6415), has been observed using the multi-frequency capabilities of the Australia Telescope Compact Array (ATCA) at frequencies of 1380 MHz and 2378 MHz. Further observations of the source were made using the Molonglo Observatory Synthesis Telescope (MOST) at a frequency of 843 MHz. The source has an angular size of 18 arcmin and has a distinct shell structure. We present the reduced multi-frequency observations of this source and provide a brief argument for its possible identification as a supernova remnant.Comment: 5 pages, 5 figures, Accepted for publication in MNRA

    A high-resolution radio survey of the Vela supernova remnant

    Full text link
    This paper presents a high-resolution radio continuum (843 MHz) survey of the Vela supernova remnant. The contrast between the structures in the central pulsar-powered nebula of the remnant and the synchrotron radiation shell allows the remnant to be identified morphologically as a member of the composite class. The data are the first of a composite remnant at spatial scales comparable with those available for the Cygnus Loop and the Crab Nebula, and make possible a comparison of radio, optical and soft X-ray emission from the resolved shell filaments. The survey, made with the Molonglo Observatory Synthesis Telescope, covers an area of 50 square degrees at a resolution of 43'' x 60'', while imaging structures on scales up to 30'.Comment: 18 pages, 7 jpg figures (version with ps figures at http://astro.berkeley.edu/~dbock/papers/); AJ, in pres

    Evidence of a Curved Synchrotron Spectrum in the Supernova Remnant SN 1006

    Full text link
    A joint spectral analysis of some Chandra ACIS X-ray data and Molonglo Observatory Synthesis Telescope radio data was performed for 13 small regions along the bright northeastern rim of the supernova remnant SN 1006. These data were fitted with a synchrotron radiation model. The nonthermal electron spectrum used to compute the photon emission spectra is the traditional exponentially cut off power law, with one notable difference: The power-law index is not a constant. It is a linear function of the logarithm of the momentum. This functional form enables us to show, for the first time, that the synchrotron spectrum of SN 1006 seems to flatten with increasing energy. The effective power-law index of the electron spectrum is 2.2 at 1 GeV (i.e., radio synchrotron-emitting momenta) and 2.0 at about 10 TeV (i.e., X-ray synchrotron-emitting momenta). This amount of change in the index is qualitatively consistent with theoretical models of the amount of curvature in the proton spectrum of the remnant. The evidence of spectral curvature implies that cosmic rays are dynamically important instead of being "test" particles. The spectral analysis also provides a means of determining the critical frequency of the synchrotron spectrum associated with the highest-energy electrons. The critical frequency seems to vary along the northeastern rim, with a maximum value of 1.1e17 (0.6e17 - 2.1e17) Hz. This value implies that the electron diffusion coefficient can be no larger than a factor of ~4.5-21 times the Bohm diffusion coefficient if the velocity of the forward shock is in the range 2300-5000 km/s. Since the coefficient is close to the Bohm limit, electrons are accelerated nearly as fast as possible in the regions where the critical frequency is about 1.0e17 Hz.Comment: 41 pages, 8 figures, accepted by Ap

    The Distance to the Cygnus Loop from Hubble Space Telescope Imaging of the Primary Shock Front

    Get PDF
    We present a Hubble Space Telescope/WFPC2 narrow-band H-alpha image of a region on the northeastern limb of the Cygnus Loop supernova remnant. This location provides a detailed example of where the primary blast wave first encounters the surrounding interstellar medium. The filament structure is seen in exquisite detail in this image, which was obtained primarily as an EARLY ACQuisition image for a follow-up spectroscopic program. We compare the HST image to a digitized version of the POSS-I red plate to measure the proper motion of this filament. By combining this value for the proper motion with previous measurements of the shock velocity at this position we find that the distance to the Cygnus Loop is 440 (+130, -100) pc, considerably smaller than the canonical value of 770 pc. We briefly discuss the ramifications of this new distance estimate for our understanding of this prototypical supernova remnant.Comment: 18 pages, 3 Figures (2 JPEG and one Postscript

    Two-dimensional soliton cellular automaton of deautonomized Toda-type

    Full text link
    A deautonomized version of the two-dimensional Toda lattice equation is presented. Its ultra-discrete analogue and soliton solutions are also discussed.Comment: 11 pages, LaTeX fil
    corecore