63 research outputs found
Brassicaceae: a rich source of health improving phytochemicals
Abstract Brassicaceae Burnett (syn. Cruciferae
A.L. de Jussieu) include many important economic
plants used as edible or ornamental which are commonly
known as the ‘‘mustard’’ plant family due to the
sharp, potent flavour of their sulfur metabolites, the
glucosinolates. Brassicas also produce phenolics,
tocopherols and peculiar seed oils. Current scientific
knowledge attributes to species belonging to this
botanical family several health benefits such as
reduced risk of cancer. This review summarizes
information on the phytochemical profile of Brassicaceae
plants, with a special regard to glucosinolates
and their derived degradation products, the isothiocyanates.
In addition, their role as antioxidant and
cancer protective metabolites is discussed
Glucosinolates from Brassicaceae of Mediterranean diet
Plants of the Brassicaceae family are widespread in the Mediterranean regions where they are widely consumed cooked (cauliflowers, broccoli, turnips) or as salads or condiments.
These plants are a good source of bioactive compounds of nutraceutical relevance1,2. Among them the glucosinolates (GLS), responsible for the plant pungent aroma and bitter taste, are of particular interest. GLS are the most studied bioactive compounds in the Brassicaceae family and epidemiological studies have shown an inverse correlation between consumption of brassica plants and risk of cancer3.
We have focused our attention on three Brassicaceae, B. oleracea, B. rapa, and Eruca sativa traditionally eaten in Puglia. The edible inflorescences of B.oleracea var italica, locally called “mugnolo” and traditionally cultivated in Salento, are characterized by the presence of the aliphatic GLSs glucoraphanin (1.79 μmol/g), glucoiberin, glucoerucin, and sinigrin, and by a good content of the aromatic GLSs glucobarberin (0.56 μmol/g) and gluconasturtin, and of the indole GLSs glucobrassicin (3.51 μmol/g), neoglucobrassicin, 4-methoxyglucobrassicin, and 4- hydroxyglucobrassicin2. In the leaves of Eruca sativa, particularly consumed as salad, the most abundant GLS is glucoraphanin. In the aerial parts of B.rapa there are three predominant GLSs: two indole GLS neoglucobrassicin (1.65 μmol/g) and glucobrassicin (0.97 μmol/g) and the aliphatic GLS gluconapin (1.13 μmol/g). Given the importance of Brassicaceae for their content in GLSs, we have also studied the accumulation of these metabolites during the different stages of growth taken B. rapa as plant model. The aerial parts of B. rapa have been found to contain more GLS during the budding stage. Moreover we have observed that at budding indole GLSs are dominant while at flowering there are more aliphatic GLSs. This gives an added value to B. rapa since it’s known that hydrolysis products from the indole GLSs have anticarcinogenic properties by induction of phase I or phase II detoxification enzymes4
Studio fitochimico di specie della tradizione mediterranea
plants of Capparales (or Brassicales) are widespread
in the Mediterranean region where they are widely consumed cooked or as salad vegetables (cabbage, Brussels sprouts, cauliflower,
broccoli) or as condiments (horseradish, mustard, capers). these plants are a good source of bioactive compounds
such as glucosinolates, vitamins, flavonoids, minerals. glucosinolates are responsible for pungent and bitter taste of
Brassicaceae and are the most extensively studied bioactive compounds for their potential as anticarcinogens due to their
hydrolysis products, the isothiocyanates. this study describes the chemical profile of a poorly studied variety of Brassica
oleracea, traditionally cultivated in Southern italy and locally called “mugnolo”, and of Capparis spinosa subsp rupestris. it
was found that “mugnolo” inflorescences are characterized by aliphatic, aromatic and indole glucosinolates. among them
the indole glucosinolates (7.68 μmol/g) are predominant, while aliphatic and aromatic glucosinolates are found in low
quantities, 2.63 μmol/g and 0.83 μmol/g respectively. chemical composition of seeds and aerial parts of C. spinosa subsp
rupestris was also determined. it was found that the principal glucosinolate of the seeds is the glucocapparin, moreover the
seeds oil is rich in unsaturated and rare lipids such as cis-vaccenic acid. the aerial parts are characterized by rutin as predominant
flavonoid
Biodiversità vegetale: fitocomposti e salute
Endemismi e biodiversità vegetali rappresentano un patrimonio di altissimo valore da preservare con
attenzione e valorizzare per i numerosi benefici che ne derivano non solo all’ambiente, ma anche in campo economico
industriale. Il mondo vegetale, attraverso la sua diversità biologica, costituisce infatti un’ampia risorsa di materie prime
utilizzate in agricoltura, medicina e farmacia. Le piante sintetizzano ed accumulano un vasto numero di metaboliti
secondari, strutturalmente differenti ed espressione dell’individualità della specie, che sono responsabili delle
caratteristiche proprietà ecologiche ed implicati nel controllo di funzioni essenziali per la pianta quali crescita e
riproduzione. Molti metaboliti secondari hanno inoltre attività farmacologiche.
Il crescente interesse verso la fitoterapia e l’elevata richiesta di prodotti per la salute di origine naturale ha indirizzato in
questi ultimi anni la ricerca farmacobotanica verso lo studio della biodiversità vegetale allo scopo di scoprire nuove
molecole bioattive e/o fitocomposti da utilizzare come leads per lo sviluppo di prodotti per la salute e farmaci
innovativi.
La presente comunicazione si propone di fornire una breve rassegna di specie vegetali di interesse fitofarmaceutico
evidenziandone il polimorfismo fitochimico derivante dalla loro biodiversità. La tematica verrà discussa facendo
riferimento sia a specie vegetali spontanee che a specie coltivate, alcune con una larga tradizione in fitoterapia, altre di
più recente applicazione dando risalto alla loro importanza nella promozione del benessere e nella ricerca di nuove cure.
SESSIONE
Oleaginose in campo farmaceutico e cosmetico. In: Oli e grassi - Fonti oleaginose per gli utilizzi food e non food a cura di Giuliano Mosca - Edagricole – Edizioni Agricole di New Business Media srl
La stragrande quantità di oli e di acidi grassi sono impiegati dall’industria alimentare per il consumo diretto, la preparazione di fritture, salse e vivande. Una quota di circa il 5% è impiegata per l’alimentazione di animali e circa il 10% per la produzione di creme, saponi, detergenti o composti simili a scopo sia cosmetico che terapeutico.
Gli oli vegetali sono ottenuti per spremitura a freddo di droghe vegetali i cui principi attivi sono caratterizzati da consistenza oleosa. Gli oli vegetali sono costituiti prevalentemente da trigliceridi ricchi in acidi grassi saturi ed insaturi, ma sono presenti anche sostanze antiossidanti, vitamine liposolubili e la cosiddetta frazione insaponificabile, ovvero una miscela di sostanze di estremo interesse sia dal punto di vista dermatologico, cosmetico e farmaceutico
Nematicidal Activity of Essential Oils from Lamiaceae
The Lamiaceae family contains important aromatic plants used in traditional and modern medicine and in food and pharmaceutical industries. Plants belonging to this family are mostly exploited for the extraction of essential oils (EOs). The genus Monarda L. includes about eighteen species of herbaceous, annual or perennial plants endemic of North America. Several biological activities have been reported for plant EOs and their main components, including a biocidal activity against plant soilborne pathogens and pests, which also includes plant-parasitic nematodes [1]. The EOs can play an important role in crop protection and have been propose as an environmentally alternative to synthetic pesticides.
In this study, the EOs from two Italian species of Monarda (M. dydima and M. fistulosa) were evaluated for their in vitro activity on infective stages of plant-parasitic nematodes Melodoigyne incognita. EOs from both Monarda species were strongly active on M. incognita juveniles showing a LC50 value of 1 µL mL-1 after 24 h exposure. The main constituents of EOs, carvacrol, γ-terpinene, o-cymene and thymol were also evaluated for their in vitro activity. Among them, carvacrol showed higher nematicidal activity also at low concentrations and at short exposure time [2]
- …