2,105 research outputs found
Cellular automata models of traffic flow along a highway containing a junction
We examine various realistic generalizations of the basic cellular automaton
model describing traffic flow along a highway. In particular, we introduce a
{\em slow-to-start} rule which simulates a possible delay before a car pulls
away from being stationary. Having discussed the case of a bare highway, we
then consider the presence of a junction. We study the effects of acceleration,
disorderness, and slow-to-start behavior on the queue length at the entrance to
the highway. Interestingly, the junction's efficiency is {\it improved} by
introducing disorderness along the highway, and by imposing a speed limit.Comment: to appear in J. Phys. A:Math.& General. 15 pages, RevTeX, 3
Postscript figure
Compelling Statement Agreements in Bankruptcy Cases: Holding Their Feet to the Fire
Symposium - An Analysis of Developments in Bankruptcy La
Code wars: steganography, signals intelligence, and terrorism
This paper describes and discusses the process of secret communication known as steganography. The argument advanced here is that terrorists are unlikely to be employing digital steganography to facilitate secret intra-group communication as has been claimed. This is because terrorist use of digital steganography is both technically and operationally implausible. The position adopted in this paper is that terrorists are likely to employ low-tech steganography such as semagrams and null ciphers instead
Optically controlled spin-glasses in multi-qubit cavity systems
Recent advances in nanostructure fabrication and optical control, suggest
that it will soon be possible to prepare collections of interacting two-level
systems (i.e. qubits) within an optical cavity. Here we show theoretically that
such systems could exhibit novel phase transition phenomena involving
spin-glass phases. By contrast with traditional realizations using magnetic
solids, these phase transition phenomena are associated with both matter and
radiation subsystems. Moreover the various phase transitions should be tunable
simply by varying the matter-radiation coupling strength.Comment: 4 pages, 3 figure
A Framework to Manage the Complex Organisation of Collaborating: Its Application to Autonomous Systems
In this paper we present an analysis of the complexities of large group
collaboration and its application to develop detailed requirements for
collaboration schema for Autonomous Systems (AS). These requirements flow from
our development of a framework for collaboration that provides a basis for
designing, supporting and managing complex collaborative systems that can be
applied and tested in various real world settings. We present the concepts of
"collaborative flow" and "working as one" as descriptive expressions of what
good collaborative teamwork can be in such scenarios. The paper considers the
application of the framework within different scenarios and discuses the
utility of the framework in modelling and supporting collaboration in complex
organisational structures
Brain connectivity Patterns Dissociate action of specific Acupressure Treatments in Fatigued Breast cancer survivors
Funding This work was supported by grants R01 CA151445 and 2UL1 TR000433-06 from the National Institutes of Health. The funding source had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. We thank the expert assistance by Dr. Bradley Foerster in acquisition of 1H-MRS and fMRI data.Peer reviewedPublisher PD
First-order super-radiant phase transitions in a multi-qubit--cavity system
We predict the existence of novel first-order phase transitions in a general
class of multi-qubit-cavity systems. Apart from atomic systems, the associated
super-radiant phase transition should be observable in a variety of solid-state
experimental systems, including the technologically important case of
interacting quantum dots coupled to an optical cavity mode.Comment: To appear in Phys. Rev. Let
Analytic results for particles with interaction in two dimensions and an external magnetic field
The -dimensional quantum problem of particles (e.g. electrons) with
interaction in a two-dimensional parabolic potential
(e.g. quantum dot) and magnetic field , reduces exactly to solving a
-dimensional problem which is independent of and . An
exact, infinite set of relative mode excitations are obtained for any . The
problem reduces to that of a ficticious particle in a two-dimensional,
non-linear potential of strength , subject to a ficticious magnetic
field , the relative angular momentum.Comment: To appear in Physical Review Letters (in press). RevTeX file. Two
figures available from [email protected] or
[email protected]
- …