39 research outputs found
Selective Regulation of NR2B by Protein Phosphatase-1 for the Control of the NMDA Receptor in Neuroprotection
An imbalance between pro-survival and pro-death pathways in brain cells can lead to neuronal cell death and neurodegeneration. While such imbalance is known to be associated with alterations in glutamatergic and Ca2+ signaling, the underlying mechanisms remain undefined. We identified the protein Ser/Thr phosphatase protein phosphatase-1 (PP1), an enzyme associated with glutamate receptors, as a key trigger of survival pathways that can prevent neuronal death and neurodegeneration in the adult hippocampus. We show that PP1α overexpression in hippocampal neurons limits NMDA receptor overactivation and Ca2+ overload during an excitotoxic event, while PP1 inhibition favors Ca2+ overload and cell death. The protective effect of PP1 is associated with a selective dephosphorylation on a residue phosphorylated by CaMKIIα on the NMDA receptor subunit NR2B, which promotes pro-survival pathways and associated transcriptional programs. These results reveal a novel contributor to the mechanisms of neuroprotection and underscore the importance of PP1-dependent dephosphorylation in these mechanisms. They provide a new target for the development of potential therapeutic treatment of neurodegeneration
Metabolomic profiles of hepatocellular carcinoma in a European prospective cohort
Background:
Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is difficult to diagnose and has limited treatment options with a low survival rate. Aside from a few key risk factors, such as hepatitis, high alcohol consumption, smoking, obesity, and diabetes, there is incomplete etiologic understanding of the disease and little progress in identification of early risk biomarkers.
Methods:
To address these aspects, an untargeted nuclear magnetic resonance metabolomic approach was applied to pre-diagnostic serum samples obtained from first incident, primary HCC cases (n = 114) and matched controls (n = 222) identified from amongst the participants of a large European prospective cohort.
Results:
A metabolic pattern associated with HCC risk comprised of perturbations in fatty acid oxidation and amino acid, lipid, and carbohydrate metabolism was observed. Sixteen metabolites of either endogenous or exogenous origin were found to be significantly associated with HCC risk. The influence of hepatitis infection and potential liver damage was assessed, and further analyses were made to distinguish patterns of early or later diagnosis.
Conclusion:
Our results show clear metabolic alterations from early stages of HCC development with application for better etiologic understanding, prevention, and early detection of this increasingly common cancer.This work was supported by the French National Cancer Institute (L’Institut National du Cancer; INCA; grant number 2009-139; PI: M. Jenab). AF received financial support (BDI fellowship) from the Centre National de la Recherche Scientifique (CNRS) and Bruker Biospin. The coordination of EPIC is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by Danish Cancer Society (Denmark); Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Education Nationale, and Institut National de la Santé et de la Recherche Médicale (INSERM) (France); Deutsche Krebshilfe, Deutsches Krebsforschungszentrum (DKFZ), and Federal Ministry of Education and Research (Germany); Hellenic Health Foundation (Greece); Italian Association for Research on Cancer (AIRC), National Research Council, Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy, and AIRE-ONLUS Ragusa, AVIS Ragusa, Sicilian Government (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), and Statistics Netherlands (the Netherlands); European Research Council (ERC; grant number ERC-2009-AdG 232997) and Nordforsk, and Nordic Center of Excellence Programme on Food, Nutrition and Health (Norway); Health Research Fund (FIS), Regional Governments of AndalucÃa, Asturias, Basque Country, Murcia (No. 6236) and Navarra, and ISCIII RETIC (RD06/0020) (Spain); Swedish Cancer Society, Swedish Scientific Council, and Regional Government of SkÃ¥ne and Västerbotten (Sweden); Cancer Research UK, Medical Research Council, Stroke Association, British Heart Foundation, Department of Health, Food Standards Agency, and Wellcome Trust (UK)
Molecular characterization of occult hepatitis B virus infection in patients with end-stage liver disease in Colombia.
ABSTARCT: Hepatitis B virus (HBV) occult infection (OBI) is a risk factor to be taken into account in transfusion, hemodialysis and organ transplantation. The aim of this study was to identify and characterize at the molecular level OBI cases in patients with end-stage liver disease.
METHODS:
Sixty-six liver samples were obtained from patients with diagnosis of end-stage liver disease submitted to liver transplantation in Medellin (North West, Colombia). Samples obtained from patients who were negative for the surface antigen of HBV (n = 50) were tested for viral DNA detection by nested PCR for ORFs S, C, and X and confirmed by Southern-Blot. OBI cases were analyzed by sequencing the viral genome to determine the genotype and mutations; additionally, viral genome integration events were examined by the Alu-PCR technique.
RESULTS:
In five cases out of 50 patients (10%) the criteria for OBI was confirmed. HBV genotype F (subgenotypes F1 and F3), genotype A and genotype D were characterized in liver samples. Three integration events in chromosomes 5q14.1, 16p13 and 20q12 affecting Receptor-type tyrosine-protein phosphatase T, Ras Protein Specific Guanine Nucleotide Releasing Factor 2, and the zinc finger 263 genes were identified in two OBI cases. Sequence analysis of the viral genome of the 5 OBI cases showed several punctual missense and nonsense mutations affecting ORFs S, P, Core and X.
CONCLUSIONS:
This is the first characterization of OBI in patients with end-stage liver disease in Colombia. The OBI cases were identified in patients with HCV infection or cryptogenic cirrhosis. The integration events (5q14.1, 16p13 and 20q12) described in this study have not been previously reported. Further studies are required to validate the role of mutations and integration events in OBI pathogenesis
Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1
Two BRCA2-like sequences are present in the Arabidopsis genome. Both genes are expressed in flower buds and encode nearly identical proteins, which contain four BRC motifs. In a yeast two-hybrid assay, the Arabidopsis Brca2 proteins interact with Rad51 and Dmc1. RNAi constructs aimed at silencing the BRCA2 genes at meiosis triggered a reproducible sterility phenotype, which was associated with dramatic meiosis alterations. We obtained the same phenotype upon introduction of RNAi constructs aimed at silencing the RAD51 gene at meiosis in dmc1 mutant plants. The meiotic figures we observed strongly suggest that homologous recombination is highly disturbed in these meiotic cells, leaving aberrant recombination events to repair the meiotic double-strand breaks. The ‘brca2' meiotic phenotype was eliminated in spo11 mutant plants. Our experiments point to an essential role of Brca2 at meiosis in Arabidopsis. We also propose a role for Rad51 in the dmc1 context
Interdisciplinarité en première ligne de soins et place du coordinateur de soins: Une étude exploratoire dans les maisons médicales et wijkgezondheidscentra
info:eu-repo/semantics/publishe
Genetic and environmental modulation of transposition shapes the evolutionary potential of Arabidopsis thaliana
International audienceAbstract Background How species can adapt to abrupt environmental changes, particularly in the absence of standing genetic variation, is poorly understood and a pressing question in the face of ongoing climate change. Here we leverage publicly available multi-omic and bio-climatic data for more than 1000 wild Arabidopsis thaliana accessions to determine the rate of transposable element (TE) mobilization and its potential to create adaptive variation in natural settings. Results We demonstrate that TE insertions arise at almost the same rate as base substitutions. Mobilization activity of individual TE families varies greatly between accessions, in association with genetic and environmental factors as well as through complex gene-environment interactions. Although the distribution of TE insertions across the genome is ultimately shaped by purifying selection, reflecting their typically strong deleterious effects when located near or within genes, numerous recent TE-containing alleles show signatures of positive selection. Moreover, high rates of transposition appear positively selected at the edge of the species’ ecological niche. Based on these findings, we predict through mathematical modeling higher transposition activity in Mediterranean regions within the next decades in response to global warming, which in turn should accelerate the creation of large-effect alleles. Conclusions Our study reveals that TE mobilization is a major generator of genetic variation in A. thaliana that is finely modulated by genetic and environmental factors. These findings and modeling indicate that TEs may be essential genomic players in the demise or rescue of native populations in times of climate crises
Natural variation at FLM splicing has pleiotropic effects modulating ecological strategies in Arabidopsis thaliana
International audienceInvestigating the evolution of complex phenotypes and the underlying molecular bases of their variation is critical to understand how organisms adapt to their environment. Applying classical quantitative genetics on a segregating population derived from a Can-0xCol-0 cross, we identify the MADS-box transcription factor FLOWERING LOCUS M (FLM) as a player of the phenotypic variation in plant growth and color. We show that allelic variation at FLM modulates plant growth strategy along the leaf economics spectrum, a trade-off between resource acquisition and resource conservation, observable across thousands of plant species. Functional differences at FLM rely on a single intronic substitution, disturbing transcript splicing and leading to the accumulation of non-functional FLM transcripts. Associations between this substitution and phenotypic and climatic data across Arabidopsis natural populations, show how noncoding genetic variation at a single gene might be adaptive through pleiotropic effects
SHOOT GROWTH1 Maintains Arabidopsis Epigenomes by Regulating IBM1
Maintaining correct DNA and histone methylation patterns is essential for the development of all eukaryotes. In Arabidopsis, we identified SHOOT GROWTH1 (SG1), a novel protein involved in the control of gene methylation. SG1 contains both a Bromo-Adjacent Homology (BAH) domain found in several chromatin regulators and an RNA-Recognition Motif (RRM). The sg1 mutations are associated with drastic pleiotropic phenotypes. The mutants degenerate after few generations and are similar to mutants of the histone demethylase INCREASE IN BONSAI METHYLATION1 (IBM1). A methylome analysis of sg1 mutants revealed a large number of gene bodies hypermethylated in the cytosine CHG context, associated with an increase in di-methylation of lysine 9 on histone H3 tail (H3K9me2), an epigenetic mark normally found in silenced transposons. The sg1 phenotype is suppressed by mutations in genes encoding the DNA methyltransferase CHROMOMETHYLASE3 (CMT3) or the histone methyltransferase KRYPTONITE (KYP), indicating that SG1 functions antagonistically to CMT3 or KYP. We further show that the IBM1 transcript is not correctly processed in sg1, and that the functional IBM1 transcript complements sg1. Altogether, our results suggest a function for SG1 in the maintenance of genome integrity by regulating IBM1