96 research outputs found
Analysis of the influence of different initial velocities on dynamic performance of multi-layer hard target penetration process
To determine the overload characteristics of the internal system of a fuze that penetrates multilayer hard targets using different fixed-link structures, a finite element model consisting of two fixed-link structures (a compression screw and a body screw) is adopted in this paper to simulate the penetration process of a three-layer concrete target plate with corresponding initial velocities. The peak amplification coefficient and vibration coefficient are used to analyze the time-domain characteristics of the penetration process signal during segmented analysis. The extracted acceleration signals of the projectile and sensor are processed by fast Fourier transform to obtain the frequency spectrum analysis results. The simulation results show that under the same working conditions, the sensor’s ability to amplify the peak acceleration of the projectile is 17.77% higher for the body screw fixed-link structure, and the average vibration coefficient is also 9.55% higher. Compared with that of the body screw fixed-link structure, the performance of the compression screw fixed-link structure is better under different initial velocity conditions. The initial penetration velocity affects mainly the amplitude of each frequency corresponding to the acceleration signals of the two fixed-link fuze structure projectiles and sensors while having a relatively small influence on the frequency distribution position
Metabolomic changes in Cryptocaryon irritans from Larimichthys crocea after exposure to copper plate
Cryptocaryon irritans is a highly detrimental parasite in mariculture, causing significant economic losses to the aquaculture industry of Larimichthys crocea. In recent years, copper and copper alloy materials have been used to kill parasites. In this study, the effect of copper plates on the tomont period of C. irritans was explored. The findings indicated that copper plates effectively eradicated tomonts, resulting in a hatching rate of 0. The metabolomic analysis revealed that a total of 2,663 differentially expressed metabolites (1,032 up-regulated and 1,631 down-regulated) were screened in the positive ion mode, and 2,199 differentially expressed metabolites (840 up-regulated and 1,359 down-regulated) were screened in the negative ion mode. L-arginine and L-aspartic acid could be used as potential biomarkers. Copper plate treatment affected 25 metabolic pathways in the tomont, most notably influencing histidine metabolism, retinol metabolism, the biosynthesis of phenylalanine, tyrosine, and tryptophan, as well as arginine and proline metabolism. It was shown that high concentrations of copper ions caused a certain degree of disruption to the metabolome of tomonts in C. irritans, thereby impacting their metabolic processes. Consequently, this disturbance ultimately leads to the rapid demise of tomonts upon exposure to copper plates. The metabolomic changes observed in this study elucidate the lethal impact of copper on C. irritans tomonts, providing valuable reference data for the prevention and control of C. irritans in aquaculture
Unsupervised learning of pixel clustering in Mueller matrix images for mapping microstructural features in pathological tissues
In histopathology, doctors identify diseases by characterizing abnormal cells and their spatial organization within tissues. Polarization microscopy and supervised learning have been proved as an effective tool for extracting polarization parameters to highlight pathological features. Here, we present an alternative approach based on unsupervised learning to group polarization-pixels into clusters, which correspond to distinct pathological structures. For pathological samples from different patients, it is confirmed that such unsupervised learning technique can decompose the histological structures into a stable basis of characteristic microstructural clusters, some of which correspond to distinctive pathological features for clinical diagnosis. Using hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) samples, we demonstrate how the proposed framework can be utilized for segmentation of histological image, visualization of microstructure composition associated with lesion, and identification of polarization-based microstructure markers that correlates with specific pathology variation. This technique is capable of unraveling invisible microstructures in non-polarization images, and turn them into visible polarization features to pathologists and researchers
The pattern of late gadolinium enhancement by cardiac MRI in fulminant myocarditis and its prognostic implication: a two-year follow-up study
BackgroundMyocardial fibrosis, as quantified by late gadolinium enhancement (LGE) in cardiac magnetic resonance (CMR), provides valuable prognostic information for patients with myocarditis. However, due to the low incidence rate of fulminant myocarditis (FM) and accordingly small sample size, the knowledge about the role of LGE to patients with FM is limited.Methods and resultsA total of 44 adults with viral-FM receiving the Chinese treating regimen were included in this retrospective study. They were divided into the low LGE group and the high LGE group according to the ratio of LGE to left ventricular mass (LGE mass%). CMR exams and LGE were performed after hemodynamic assistance at discharge in all patients with FM. Routine echocardiography parameters and global longitudinal strain (GLS) at discharge and at 2-year follow-up were obtained and then compared. Both left ventricular ejection fraction (LVEF) and GLS showed no significant difference in both groups at discharge, whereas significant differences were observed at 2-year follow-up between two groups. Moreover, there were significant improvements of LVEF and GLS in the low LGE group, but not in the high LGE group during the 2-year period. Furthermore, LGE mass% was negatively correlated with GLS and LVEF.ConclusionsThere were two distinct forms of LGE presentation in patients with FM. Moreover, the cardiac function of patients with low LGE was significantly better than those with high LGE at 2-year follow-up. LGE mass% at discharge provided significant prognosis information about cardiac function of patients with FM
Genome-wide identification and expression analysis of the KCS gene family in soybean (Glycine max) reveal their potential roles in response to abiotic stress
Very long chain fatty acids (VLCFAs) are fatty acids with chain lengths of 20 or more carbon atoms, which are the building blocks of various lipids that regulate developmental processes and plant stress responses. 3-ketoacyl-CoA synthase encoded by the KCS gene is the key rate-limiting enzyme in VLCFA biosynthesis, but the KCS gene family in soybean (Glycine max) has not been adequately studied thus far. In this study, 31 KCS genes (namely GmKCS1 - GmKCS31) were identified in the soybean genome, which are unevenly distributed on 14 chromosomes. These GmKCS genes could be phylogenetically classified into seven groups. A total of 27 paralogous GmKCS gene pairs were identified with their Ka/Ks ratios indicating that they had undergone purifying selection during soybean genome expansion. Cis-acting element analysis revealed that GmKCS promoters contained multiple hormone- and stress-responsive elements, indicating that GmKCS gene expression levels may be regulated by various developmental and environmental stimuli. Expression profiles derived from RNA-seq data and qRT-PCR experiments indicated that GmKCS genes were diversely expressed in different organs/tissues, and many GmKCS genes were found to be differentially expressed in the leaves under cold, heat, salt, and drought stresses, suggesting their critical role in soybean resistance to abiotic stress. These results provide fundamental information about the soybean KCS genes and will aid in their further functional elucidation and exploitation
An Improved Timed Elastic Band (TEB) Algorithm of Autonomous Ground Vehicle (AGV) in Complex Environment
In recent decades, the Timed Elastic Band (TEB) algorithm is widely used for the AGV local path panning because of its convenient and efficiency. However, it may make a local detour when encountering a curve turn and cause excessive energy consumption. To solve this problem, this paper proposed an improved TEB algorithm to make the AGV walk along the wall when turning, which shortens the planning time and saves energy. Experiments were implemented in the Rviz visualization tool platform of the robot operating system (ROS). Simulated experiment results reflect that an amount of 5% reduction in the planning time has been achieved and the velocity curve implies that the operation was relatively smooth. Practical experiment results demonstrate the effectiveness and feasibility of the proposed method that the robots can avoid obstacles smoothly in the unknown static and dynamic obstacle environment
Mechanical Properties of Vacancy Tuned Carbon Honeycomb
Carbon honeycomb (CHC) has great application potential in many aspects for the outstanding mechanical properties. However, the effect of both defects and temperature on the mechanical properties are far from reasonable understanding, which might be a huge obstacle for its promising applications as engineering materials. In this work, we investigate the effect of vacancy-type defect, which is inevitably exists in material, on the mechanical properties of CHC via reactive molecular dynamics simulations. The mechanical strength is anisotropic and decreases with the increasing temperature. CHC yield in cell axis direction since the break of C⁻C bonds on the junction. Vacancies weaken CHC by reducing the strength and failure strain. The effect of single vacancy on strength of CHC becomes more obvious with reducing temperature and is sensitive to the location and bonding of the vacancies. The maximum reduction of strength in cell axis direction is with vacancy on the middle of the wall of CHC where sp2 bonds are removed. The strength is reduced by 8.1% at 500 K, 11.5% at 300 K and 12.8% at 100 K. With 0.77% defect concentration, the strength reduces 40.3% in cell axis direction but only 18.7% in zigzag direction and 24.4% in armchair direction
Sensitive Five-Fold Local Symmetry to Kinetic Energy of Depositing Atoms in Cu-Zr Thin Film Growth
We have investigated the glass formation ability of Cu-Zr alloy by molecular dynamics simulation of the deposition process. The atomistic structures of ZrxCu100−x metallic glass films have been systematically examined under the growth conditions of hypereutectic-eutectic, near-eutectic, and hypoeutectic regions by the radial distribution function and simulated X-ray diffraction. The structure analysis using Voronoi polyhedron index method demonstrates the variations of short-range order and five-fold local symmetry in ZrxCu100−x metallic glass films with respect to the growth conditions. We manifest that the five-fold local symmetry is sensitive to the kinetic energy of the depositing atoms. There is positive correlation between the degree of five-fold local symmetry and glass forming ability. Our results suggest that sputtering conditions greatly affect the local atomic structures and consequential properties. The glass forming ability could be scaled by the degree of five-fold local symmetry. Our study might be useful in optimizing sputtering conditions in real experiments, as well as promising implications in material design of advanced glassy materials
Study on Two Typical Progressive Motions in Tai Chi (Bafa Wubu) Promoting Lower Extremity Exercise
Background: By comparatively investigating the joints, muscles and bones of the lower extremity during two progressive motions in Bafa Wubu and normal walking, this paper aims to enrich the diversity of walking exercise and scientifically provide theoretical guidance for primary practitioners. The scientific training methods and technical characteristics of Bafa Wubu, as well as its contribution to comprehensive exercise of the lower extremities, are further explored. Methods: A total of eight professional athletes of Tai Chi at the national level were recruited. The kinetic parameters of the lower extremity were calculated using AnyBody 7.2 musculoskeletal modeling. Stress analysis of the iliac bone was performed using an ANSYS 19.2 workbench. Results: In Bafa Wubu, the ground reaction force during two progressive motions was significantly smaller than that noted during normal walking. During warding off with steps forward and laying with steps forward, the load at the three joints of the lower extremity was significantly smaller than that during normal walking in the frontal plane, but significantly greater than that noted during normal walking in the vertical axis. In addition, the lower limb joint torque was higher than that of normal walking in both progressive movements, and lower limb muscle activation was higher. The iliac bone loads during the two progressive motions were larger than those during normal walking, and the maximum loading point differed. Conclusions: This is the first study to demonstrate the biomechanical performance of Bafa Wubu in professional athletes of Tai Chi. Two progressive motions of Bafa Wubu require the lower extremity to be slowly controlled, thereby resulting in a smaller ground reaction force. In addition, the loads of the three joints at the lower extremity all increase in the vertical direction and decrease in the lateral direction, reducing the possibility of lateral injury to the joints. In addition, the two progressive motions significantly enhance the muscle strength of the plantar flexion muscles, dorsiflexor, and muscles around the thigh, and effectively stimulate the bones of the lower extremity. Therefore, progressive motion training contributes to improving the controlling and supporting capabilities of the lower extremities during normal walking
- …