51 research outputs found
Carbon Dioxide To Methanol: Stoichiometric Catalytic Hydrogenation Under High Pressure Conditions
El CO2 en la atmósfera aumenta a raíz del empleo de combustibles fósiles. La hidrogenación de CO2 ofrece una ruta
única para transformar esta molécula en productos químicos o combustibles como el metanol. El uso de alta presión
en el ratio CO2:H2 = 1:>3 permite incrementar la cinética de la reacción, alcanzando así la conversión termodinámica
como ya se ha reportado. No obstante, el mayor inconveniente del mencionado proceso es el tratamiento del
hidrógeno sin reaccionar. Por ello, se evaluaron las ventajas de realizar la reacción a alta presión en condiciones
estequiométricas (CO2:H2=1:3) examinando diferentes parámetros. Una vez optimizados, se alcanzó el límite
termodinámico y se obtuvo un valor de conversión de CO2 cercano al 90% con una selectividad para metanol > 95%
a 280 °C y 442 bar empleando Cu/ZnO/AlO3 como catalizador. Al minimizar las limitaciones de transferencia de
masa, el rendimiento fue de 15.6 gMeOH gcat-1 h-1, aproximadamente un orden de magnitud mayor comparado con
los de bibliografía. Adicionalmente, los mecanismos de la reacción en condiciones de alta presión se estudiaron
mediante análisis espacial de la fase gas por CG y espectroscopía Raman. El estudio mostró que el CO2 se convierte
directamente a metanol a baja temperatura, mientras que a alta temperatura la reacción water-gas shift es
predominante generando CO, que produce metanol posteriormente. estructura core-shell. Este material mostró un recubrimiento uniforme del ZnO en los cores de Cu, y el espesor del
shell se optimizó. Dichos nanomateriales mostraron alta actividad catalítica, útil para comprender la interacción entre
Cu y Zn y en concreto, las exclusivas fases de Zn formadas durante la reacción a alta presión mediante operando
DRX a alta presión.Carbon dioxide concentration in the atmosphere is continuously increasing as a consequence of the combustion of
fossil fuels. CO2 hydrogenation offers a unique path to transform the chemically stable CO2 to useful chemicals or fuel
such as methanol. High-pressure advantages under over-stoichiometric CO2:H2 ratio (1:>3) has been reported
previously by drastically increasing the reaction kinetics and even reaching the thermodynamic conversion. However,
the major drawback of such processes is the treatment of unreacted hydrogen. Reflecting this background, the
advantages of the high pressure approach in stoichiometric CO2:H2 (1:3) ratio were critically evaluated by examining
different reaction and process parameters. When optimized, we could reach the thermodynamic limit and obtained
about 90% CO2 conversion with >95% methanol selectivity at 280 °C and 442 bar using Cu/ZnO/Al2O3 catalyst.
When the mass transfer limitation was minimized, an outstanding weight time yield was achieved with 15.6 gMeOH
gcat-1 h-1, which is about one order of magnitude higher than the state-of-the-art values. Furthermore, the reaction
mechanisms under high-pressure reaction conditions were studied by spatially-resolved gas phase analysis through
the axial direction of the catalytic reactor by GC and Raman spectroscopy
A Review on Smart Home Automation using Virtue of IoT
Smart home automation system in daily routine plays a starring role which helps in reducing work. Smart home automation is flattering trendy due to its various advantages. With development of Automation technology, life is getting effortless and uncomplicated in all aspects and it is intended to save the electric power and human energy besides automated systems are being favored more than manual system. With the speedy enhancement in the number of users of internet over the past decade has made Internet an essential part of life. Nowadays IoT is the most recent and promising internet technology. This paper describes the literature survey of existing system. We will perceive a review of the technology used to design this system. Comparisons of different system technology are studied in this paper.
Mobilization of Stem Cells Using G-CSF for Acute Ischemic Stroke: A Randomized Controlled, Pilot Study
Background. There is emerging evidence to support the use of granulocyte colony-stimulating factor (G-CSF) therapy in patients with acute ischemic stroke. Aims. To explore feasibility, safety, and preliminary efficacy of G-CSF therapy in patients with acute ischemic stroke. Patients and Method. In randomized study, 10 patients with acute ischemic stroke were recruited in 1 : 1 ratio to receive 10 μg/kg G-CSF treatment subcutaneously daily for five days with conventional care or conventional treatment alone. Efficacy outcome measures were assessed at baseline, one month, and after six months of treatment included Barthel Index (BI), National Institute of Health Stroke Scale, and modified Rankin Scale. Results. One patient in G-CSF therapy arm died due to raised intracranial pressure. No severe adverse effects were seen in rest of patients receiving G-CSF therapy arm or control arm. No statistically significant difference between intervention and control was observed in any of the scores though a trend of higher improvement of BI score is seen in the intervention group. Conclusion. Although this study did not have power to examine efficacy, it provides preliminary evidence of potential safety, feasibility, and tolerability of G-CSF therapy. Further studies need to be done on a large sample to confirm the results
Carbon Dioxide To Methanol: Stoichiometric Catalytic Hydrogenation Under High Pressure Conditions
El CO2 en la atmósfera aumenta a raíz del empleo de combustibles fósiles. La hidrogenación de CO2 ofrece una ruta
única para transformar esta molécula en productos químicos o combustibles como el metanol. El uso de alta presión
en el ratio CO2:H2 = 1:>3 permite incrementar la cinética de la reacción, alcanzando así la conversión termodinámica
como ya se ha reportado. No obstante, el mayor inconveniente del mencionado proceso es el tratamiento del
hidrógeno sin reaccionar. Por ello, se evaluaron las ventajas de realizar la reacción a alta presión en condiciones
estequiométricas (CO2:H2=1:3) examinando diferentes parámetros. Una vez optimizados, se alcanzó el límite
termodinámico y se obtuvo un valor de conversión de CO2 cercano al 90% con una selectividad para metanol > 95%
a 280 °C y 442 bar empleando Cu/ZnO/AlO3 como catalizador. Al minimizar las limitaciones de transferencia de
masa, el rendimiento fue de 15.6 gMeOH gcat-1 h-1, aproximadamente un orden de magnitud mayor comparado con
los de bibliografía. Adicionalmente, los mecanismos de la reacción en condiciones de alta presión se estudiaron
mediante análisis espacial de la fase gas por CG y espectroscopía Raman. El estudio mostró que el CO2 se convierte
directamente a metanol a baja temperatura, mientras que a alta temperatura la reacción water-gas shift es
predominante generando CO, que produce metanol posteriormente. estructura core-shell. Este material mostró un recubrimiento uniforme del ZnO en los cores de Cu, y el espesor del
shell se optimizó. Dichos nanomateriales mostraron alta actividad catalítica, útil para comprender la interacción entre
Cu y Zn y en concreto, las exclusivas fases de Zn formadas durante la reacción a alta presión mediante operando
DRX a alta presión.Carbon dioxide concentration in the atmosphere is continuously increasing as a consequence of the combustion of
fossil fuels. CO2 hydrogenation offers a unique path to transform the chemically stable CO2 to useful chemicals or fuel
such as methanol. High-pressure advantages under over-stoichiometric CO2:H2 ratio (1:>3) has been reported
previously by drastically increasing the reaction kinetics and even reaching the thermodynamic conversion. However,
the major drawback of such processes is the treatment of unreacted hydrogen. Reflecting this background, the
advantages of the high pressure approach in stoichiometric CO2:H2 (1:3) ratio were critically evaluated by examining
different reaction and process parameters. When optimized, we could reach the thermodynamic limit and obtained
about 90% CO2 conversion with >95% methanol selectivity at 280 °C and 442 bar using Cu/ZnO/Al2O3 catalyst.
When the mass transfer limitation was minimized, an outstanding weight time yield was achieved with 15.6 gMeOH
gcat-1 h-1, which is about one order of magnitude higher than the state-of-the-art values. Furthermore, the reaction
mechanisms under high-pressure reaction conditions were studied by spatially-resolved gas phase analysis through
the axial direction of the catalytic reactor by GC and Raman spectroscopy
Optimal Transmit Spectra for HDSL2
ReportWe present a general framework for designing optimal transmit spectra for the HDSL2 service. Using the channel and interference transfer functions and SNR estimates, we set up and solve an optimization problem to maximize the capacity. Sizable gains in performance margins (or bit rates) result. Furthermore, by design, the spectra are spectrally compatible with other services. While the framework is quite general - it does not depend on the exact choice of modulation scheme, for example - it is also extremely simple and of low computationaly complexity. Our results can be used either for dynamically adapting the signaling spectra to account for changing noise or intereference conditions or for the design of new fixed transmit spectral masks using worst-case analysis
- …