650 research outputs found
Some structures of marine natural products
Applications of x-ray crystallographic methods to marine chemistry are discussed. Results of research on a biosynthetic problem: diterpenes from Dictyotaceae are discussed under the following section headings: history of the problem; dictyoxepin; dictyodial; and dictyolactone. Studies on marine ecology are reported under the following headings: symbiosis and antibiosis; metabolites from opisthobranch molluscs, including, dolabelladiene, 9-isocyanopupukeanane and 2-isocyanopupukeanane, and crispatone; metabolites of goronians and soft corals, including zooxanthellae and the metabolism of coelenterates, ophirin, sinularene, and erectene. (JGB
Predicting and harnessing protein flexibility in the design of species-specific inhibitors of thymidylate synthase1,21Escherichia coli thymidylate synthase numbering is used unless otherwise noted.2PDB coordinates have been deposited with the RCSB with accession ID: 1JG0.
AbstractBackground: Protein plasticity in response to ligand binding abrogates the notion of a rigid receptor site. Thus, computational docking alone misses important prospective drug design leads. Bacterial-specific inhibitors of an essential enzyme, thymidylate synthase (TS), were developed using a combination of computer-based screening followed by in-parallel synthetic elaboration and enzyme assay [Tondi et al. (1999) Chem. Biol. 6, 319–331]. Specificity was achieved through protein plasticity and despite the very high sequence conservation of the enzyme between species.Results: The most potent of the inhibitors synthesized, N,O-didansyl-L-tyrosine (DDT), binds to Lactobacillus casei TS (LcTS) with 35-fold higher affinity and to Escherichia coli TS (EcTS) with 24-fold higher affinity than to human TS (hTS). To reveal the molecular basis for this specificity, we have determined the crystal structure of EcTS complexed with DDT and 2′-deoxyuridine-5′-monophosphate (dUMP). The 2.0 Å structure shows that DDT binds to EcTS in a conformation not predicted by molecular docking studies and substantially differently than other TS inhibitors. Binding of DDT is accompanied by large rearrangements of the protein both near and distal to the enzyme’s active site with movement of Cα carbons up to 6 Å relative to other ternary complexes. This protein plasticity results in novel interactions with DDT including the formation of hydrogen bonds and van der Waals interactions to residues conserved in bacterial TS but not hTS and which are hypothesized to account for DDT’s specificity. The conformation DDT adopts when bound to EcTS explains the activity of several other LcTS inhibitors synthesized in-parallel with DDT suggesting that DDT binds to the two enzymes in similar orientations.Conclusions: Dramatic protein rearrangements involving both main and side chain atoms play an important role in the recognition of DDT by EcTS and highlight the importance of incorporating protein plasticity in drug design. The crystal structure of the EcTS/dUMP/DDT complex is a model system to develop more selective TS inhibitors aimed at pathogenic bacterial species. The crystal structure also suggests a general formula for identifying regions of TS and other enzymes that may be treated as flexible to aid in computational methods of drug discovery
Caught in Action: X-ray Structure of Thymidylate Synthase with Noncovalent Intermediate Analog
Methylation of 2-deoxyuridine-5′-monophosphate (dUMP) at the C5 position by the obligate dimeric thymidylate synthase (TSase) in the sole de novo biosynthetic pathway to thymidine 5′-monophosphate (dTMP) proceeds by forming a covalent ternary complex with dUMP and cosubstrate 5,10-methylenetetrahydrofolate. The crystal structure of an analog of this intermediate gives important mechanistic insights but does not explain the half-of-the-sites activity of the enzyme. Recent experiments showed that the C5 proton and the catalytic Cys are eliminated in a concerted manner from the covalent ternary complex to produce a noncovalent bisubstrate intermediate. Here, we report the crystal structure of TSase with a close synthetic analog of this intermediate in which it has partially reacted with the enzyme but in only one protomer, consistent with the half-of-the-sites activity of this enzyme. Quantum mechanics/molecular mechanics simulations confirmed that the analog could undergo catalysis. The crystal structure shows a new water 2.9 Å from the critical C5 of the dUMP moiety, which in conjunction with other residues in the network, may be the elusive general base that abstracts the C5 proton of dUMP during the reaction.This work was supported by National Institutes of Health (NIH) Grant R01 GM024485 to R.M.S. and NIH Grant R01 GM65368 to A.K., the Spanish Ministerio de Ciencia, Innovación y Universidades (Grants PGC2018–094852–B–C21 and PID2019–107098RJ–I00), Generalitat Valenciana (Grants AICO/2019/195, SEJI/2020/007, and APOSTD/2020/015), and Universitat Jaume I (UJI–A2019–04 and UJI–B2020–03)
Diversity in kinetics correlated with structure in nano body-stabilized LacY.
Funder: research foundation-flandersThe structure of lactose permease, stabilized in a periplasmic open conformation by two Gly to Trp replacements (LacYww) and complexed with a nanobody directed against this conformation, provides the highest resolution structure of the symporter. The nanobody binds in a different manner than two other nanobodies made against the same mutant, which also bind to the same general region on the periplasmic side. This region of the protein may represent an immune hotspot. The CDR3 loop of the nanobody is held by hydrogen bonds in a conformation that partially blocks access to the substrate-binding site. As a result, kon and koff for galactoside binding to either LacY or the double mutant complexed with the nanobody are lower than for the other two LacY/nanobody complexes though the Kd values are similar, reflecting the fact that the nanobodies rigidify structures along the pathway. While the wild-type LacY/nanobody complex clearly stabilizes a similar 'extracellular open' conformation in solution, judged by binding kinetics, the complex with wild-type LacY did not yet crystallize, suggesting the nanobody does not bind strongly enough to shift the equilibrium to stabilize a periplasmic side-open conformation suitable for crystallization. However, the similarity of the galactoside binding kinetics for the nanobody-bound complexes with wild type LacY and with LacYWW indicates that they have similar structures, showing that the reported co-structures reliably show nanobody interactions with LacY
Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90410/1/PROT_23231_sm_suppinfo.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/90410/2/23231_ftp.pd
Mg 2+ Binds to the Surface of Thymidylate Synthase and Affects Hydride Transfer at the Interior Active Site
Thymidylate synthase (TSase) produces the sole intracellular de novo source of thymidine (i.e. the DNA base T) and thus is a common target for antibiotic and anticancer drugs. Mg2+ has been reported to affect TSase activity, but the mechanism of this interaction has not been investigated. Here we show that Mg2+ binds to the surface of Escherichia coli TSase and affects the kinetics of hydride transfer at the interior active site (16 Å away). Examination of the crystal structures identifies a Mg2+ near the glutamyl moiety of the folate cofactor, providing the first structural evidence for Mg2+ binding to TSase. The kinetics and NMR relaxation experiments suggest that the weak binding of Mg2+ to the protein surface stabilizes the closed conformation of the ternary enzyme complex and reduces the entropy of activation on the hydride transfer step. Mg2+ accelerates the hydride transfer by ca. 7-fold but does not affect the magnitude or temperature-dependence of the intrinsic kinetic isotope effect. These results suggest that Mg2+ facilitates the protein motions that bring the hydride donor and acceptor together, but it does not change the tunneling ready state of the hydride transfer. These findings highlight how variations in cellular Mg2+ concentration can modulate enzyme activity through long-range interactions in the protein, rather than binding at the active site. The interaction of Mg2+ with the glutamyl-tail of the folate cofactor and nonconserved residues of bacterial TSase may assist in designing antifolates with poly-glutamyl substitutes as species-specific antibiotic drugs
Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel That Evolved by Gene Duplication
Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two (βα)(8) barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys)(3)Zn site in the related enzymes, MetH and betaine–homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E·Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer
Socio-cultural influences on the behaviour of South Asian women with diabetes in pregnancy: qualitative study using a multi-level theoretical approach
BACKGROUND: Diabetes in pregnancy is common in South Asians, especially those from low-income backgrounds, and leads to short-term morbidity and longer-term metabolic programming in mother and offspring. We sought to understand the multiple influences on behaviour (hence risks to metabolic health) of South Asian mothers and their unborn child, theorise how these influences interact and build over time, and inform the design of culturally congruent, multi-level interventions. METHODS: Our sample for this qualitative study was 45 women of Bangladeshi, Indian, Sri Lankan, or Pakistani origin aged 21-45 years with a history of diabetes in pregnancy, recruited from diabetes and antenatal services in two deprived London boroughs. Overall, 17 women shared their experiences of diabetes, pregnancy, and health services in group discussions and 28 women gave individual narrative interviews, facilitated by multilingual researchers, audiotaped, translated, and transcribed. Data were analysed using the constant comparative method, drawing on sociological and narrative theories. RESULTS: Key storylines (over-arching narratives) recurred across all ethnic groups studied. Short-term storylines depicted the experience of diabetic pregnancy as stressful, difficult to control, and associated with negative symptoms, especially tiredness. Taking exercise and restricting diet often worsened these symptoms and conflicted with advice from relatives and peers. Many women believed that exercise in pregnancy would damage the fetus and drain the mother's strength, and that eating would be strength-giving for mother and fetus. These short-term storylines were nested within medium-term storylines about family life, especially the cultural, practical, and material constraints of the traditional South Asian wife and mother role and past experiences of illness and healthcare, and within longer-term storylines about genetic, cultural, and material heritage - including migration, acculturation, and family memories of food insecurity. While peer advice was familiar, meaningful, and morally resonant, health education advice from clinicians was usually unfamiliar and devoid of cultural meaning. CONCLUSIONS: 'Behaviour change' interventions aimed at preventing and managing diabetes in South Asian women before and during pregnancy are likely to be ineffective if delivered in a socio-cultural vacuum. Individual education should be supplemented with community-level interventions to address the socio-material constraints and cultural frames within which behavioural 'choices' are made
The political role of service delivery in state-building: Exploring the relevance of European history for developing countries
Concerns about failed and fragile states have put state- and nation-building firmly on the academic and policy agenda, but the crucial role of public services in this process has remained underexplored. The 1960s and '70s generated a substantial set of literature that is largely missing from current writing. It identified state penetration, standardisation and accommodation as key processes in the state- and nation-building sequence. This article analyses these three processes in Western Europe in the seventeenth to nineteenth centuries, and the role of public services therein, to explore how they may help us to understand the success and failure of state- and nation-building in developing countries and fragile states. © The Authors 2011. Development Policy Revie
- …