217 research outputs found

    Energy diffusion in strongly driven quantum chaotic systems

    Full text link
    The energy evolution of a quantum chaotic system under the perturbation that harmonically depends on time is studied for the case of large perturbation, in which the rate of transition calculated from the Fermi golden rule exceeds the frequency of perturbation. It is shown that the energy evolution retains its diffusive character, with the diffusion coefficient that is asymptotically proportional to the magnitude of perturbation and to the square root of the density of states. The results are supported by numerical calculation. They imply the absence of the quantum-classical correspondence for the energy diffusion and the energy absorption in the classical limit 0\hbar \to 0.Comment: 12 pages, 3 figures, RevTe

    Gibbs attractor: a chaotic nearly Hamiltonian system, driven by external harmonic force

    Full text link
    A chaotic autonomous Hamiltonian systems, perturbed by small damping and small external force, harmonically dependent on time, can acquire a strange attractor with properties similar to that of the canonical distribution - the Gibbs attractor. The evolution of the energy in such systems can be described as the energy diffusion. For the nonlinear Pullen - Edmonds oscillator with two degrees of freedom the properties of the Gibbs attractor and their dependence on parameters of the perturbation are studied both analytically and numerically.Comment: 8 pages RevTeX, 3 figure

    Polarized solitons in a cubic-quintic medium

    Full text link
    The interaction of both scalar and counter-rotating polarized steady state pulses (SSP) is studied numerically for a medium characterized by nonlinear susceptibilities of the third and the fifth order (a cubic-quintic medium with,χ3>0,χ5<0\chi_{3}>0,\chi_{5}<0). The collision of two plateau-shaped solitons proved to be essentially inelastic, as a number of secondary elliptically polarized solitary waves arise as a result of interaction of steady-state pulses.Comment: 11 pages, 9 figures, PDF onl

    On the influence of noise on chaos in nearly Hamiltonian systems

    Full text link
    The simultaneous influence of small damping and white noise on Hamiltonian systems with chaotic motion is studied on the model of periodically kicked rotor. In the region of parameters where damping alone turns the motion into regular, the level of noise that can restore the chaos is studied. This restoration is created by two mechanisms: by fluctuation induced transfer of the phase trajectory to domains of local instability, that can be described by the averaging of the local instability index, and by destabilization of motion within the islands of stability by fluctuation induced parametric modulation of the stability matrix, that can be described by the methods developed in the theory of Anderson localization in one-dimensional systems.Comment: 10 pages REVTEX, 9 figures EP
    corecore