87 research outputs found

    Combination drug screen targeting glioblastoma core vulnerabilities reveals pharmacological synergisms

    No full text
    BackgroundPharmacological synergisms are an attractive anticancer strategy. However, with more than 5000 approved-drugs and compounds in clinical development, identifying synergistic treatments represents a major challenge.MethodsHigh-throughput screening was combined with target deconvolution and functional genomics to reveal targetable vulnerabilities in glioblastoma. The role of the top gene hit was investigated by RNA interference, transcriptomics and immunohistochemistry in glioblastoma patient samples. Drug combination screen using a custom-made library of 88 compounds in association with six inhibitors of the identified glioblastoma vulnerabilities was performed to unveil pharmacological synergisms. Glioblastoma 3D spheroid, organotypic ex vivo and syngeneic orthotopic mouse models were used to validate synergistic treatments.FindingsNine targetable vulnerabilities were identified in glioblastoma and the top gene hit RRM1 was validated as an independent prognostic factor. The associations of CHK1/MEK and AURKA/BET inhibitors were identified as the most potent amongst 528 tested pairwise drug combinations and their efficacy was validated in 3D spheroid models. The high synergism of AURKA/BET dual inhibition was confirmed in ex vivo and in vivo glioblastoma models, without detectable toxicity.InterpretationOur work provides strong pre-clinical evidence of the efficacy of AURKA/BET inhibitor combination in glioblastoma and opens new therapeutic avenues for this unmet medical need. Besides, we established the proof-of-concept of a stepwise approach aiming at exploiting drug poly-pharmacology to unveil druggable cancer vulnerabilities and to fast-track the identification of synergistic combinations against refractory cancers

    Comparative effects of taxol and taxotere on two different human carcinoma lines.

    No full text
    The effects of taxoids (taxol and Taxotere) were followed on two human cancerous cell lines (bladder carcinoma J82 cells and epidermoid carcinoma KB 3-1 cells). Three cellular parameters were studied, viz., the qualitative effect on cellular microtubules, the quantitation of tubulin, and the antimitotic action, using two-parametric flow-cytometric analyses in treated cells. In both of the cell lines the tubulin content increased after taxoid treatment before the accumulation of cells in the G2/M phase. The effects of taxoids on tubulin appeared at about a 10-fold lower concentration on KB cells than on J82 cells. After drug exposure, the microtubule network showed a striking difference between the two cell lines: microtubule bundles were predominant in the J82 cell line, whereas multiple asters were prevalent in the KB cell line. The formation of these structures was dose- and time-dependent. Asters were observed in mitotic cells and bundles were seen in interphase cells. The reversibility of these structures in both cell lines varied with the duration of exposure to drug. Some differences were shown between taxol and Taxotere: the effects of Taxotere as compared with taxol appeared at a 2-fold lower concentration and their reversibility was slower.This study was supported by grants from the ARC and the FNCLCC and by grant PB 87-0230 from the DGICY

    EB1-dependent long survival of glioblastoma-grafted mice with the oral tubulin-binder BAL101553 is associated with inhibition of tumor angiogenesis

    No full text
    International audienceGlioblastoma (GBM) are aggressive brain tumors with limited treatment options. Cancer stem-like cells (CSLCs) contribute to GBM invasiveness, representing promising targets. BAL101553, a prodrug of BAL27862, is a novel small molecule tubulin-binding agent, promoting tumor cell death through spindle assembly checkpoint activation, which is currently in Phase 1/2a in advanced solid tumor patients including GBM. This study aimed to evaluate long-term daily oral BAL101553 treatment of mice orthotopically grafted with GBM CSLCs (GBM6) according to EB1 expression-level, and to decipher its mechanism of action on GBM stem cells. Oral treatment with BAL101553 for 100 days provoked a large EB1 expression level-dependent survival benefit, together with a decrease in tumor growth and brain invasion. Formation of vascular structures by the fluorescent GBM6-GFP-sh0 cells, mimicking endothelial vascular networks, was observed in the brains of control grafted mice. Following BAL101553 treatment, vessels were no longer detectable, suggesting inhibition of the endothelial trans-differentiation of GBM stem cells. In vitro, BAL27862 treatment resulted in a switch to the endothelial-like phenotype of GBM6 towards an astrocytic phenotype. Moreover, the drug inhibited secretion of VEGF, thus preventing normal endothelial cell migration activated by CSLCs. The decrease in VEGF secretion was confirmed in a human GBM explant following drug treatment. Altogether, our data first confirm the potential of EB1 expression as a response-predictive biomarker of BAL101553 in GBM we previously published and add new insights in BAL101553 long-term action by counteracting CSLCs mediated tumor angiogenesis. Our results strongly support BAL101553 clinical studies in GBM patients

    a novel microtubule inhibitor, suppresses calmodulin interaction with the microtubule-associated protein STOP. Biochemistry 2007

    No full text
    ABSTRACT: Vinca alkaloids vinblastine and vincristine and some of their derivatives such as vinorelbine are widely used in therapy of leukemia and several solid tumors. Their action is associated with alterations of the mitotic spindle functions that prevent the cell cycle progression and lead to mitotic block. A number of studies show that some Vinca alkaloids inhibit CaM-target interaction. The newest microtubule inhibitor, vinflunine (Javlor), currently in clinical trials, is remarkably more active than vinblastine against a number of tumors. Moreover, vinflunine is significantly less toxic than other Vinca alkaloids. The high antitumor activity of this molecule is not well understood since it binds to tubulin with an overall affinity severalfold lower than that of vinblastine or vincristine. In this study, we examined the interaction of Ca 2+ -CaM with vinflunine, vinblastine, and stable tubule only polypeptide (STOP) by using a combination of thermodynamic and mass spectrometric approaches. We characterized the influence of Vinca alkaloids on Ca 2+ -CaM-STOP complex formation. Our results revealed different binding modes to Ca 2+ -CaM for vinflunine and vinblastine, highlighting that adding fluorine atoms on the cleavamine moiety of the Vinca alkaloid molecule is critical for the localization of the drug on calmodulin. We demonstrate that vinflunine is a better inhibitor for STOP binding to calmodulin than vinblastine. We suggest that vinflunine action on calmodulin can have an effect on microtubule dynamics. These data may contribute to a better understanding of the superior antitumor efficiency and lower toxicity of vinflunine

    Comparison of pharmacokinetics and biodistribution of laser-synthesized plasmonic Au and TiN nanoparticles

    No full text
    International audienceAbstract Plasmonic nanostructures offer wide range of diagnostic and therapeutic functionalities for biomedical applications. Gold nanoparticles (Au NPs) present one of the most explored nanomaterial in this field, while titanium nitride nanoparticles (TiN NPs) is a new promising nanomaterial with superior plasmonic properties for biomedicine. However conventional chemical techniques for the synthesis of these nanomaterials cannot always match stringent requirements for toxicity levels and surface conditioning. Laser-synthesized Au and TiN NPs offer exceptional purity (no contamination by by-products or ligands) and unusual surface chemistry. Therefore, these NPs present a viable alternative to chemically synthesized counterparts. This work presents comparative analysis of pharmacokinetics and biodistribution of laser-synthesized 20 nm Au and TiN NPs under intravenous administration in mice model. Our data show that Au NPs and bare TiN NPs are rapidly eliminated from the blood circulation and accumulate preferentially in liver and spleen, while coating of TiN NPs by hydrophilic polymer polyethylene glycol (PEG) significantly prolongates blood circulation time and improves delivery of the NPs to tumor. We finally discuss potential applications of laser synthesized Au NPs in SERS, SEIRA and electrocatalysis, while TiN nanoparticles are considered as promising agents for photothermal therapy and photoacoustic imaging

    Chemical modifications of imidazole-containing alkoxyamines increase C-ON bond homolysis rate: Effects on their cytotoxic properties in glioblastoma cells

    No full text
    WOS:000465176600001Previously, we described alkoxyamines bearing a pyridine ring as new pro-drugs with low molecular weights and theranostic activity. Upon chemical stimulus, alkoxyamines undergo homolysis and release free radicals, which can, reportedly, enhance magnetic resonance imaging and trigger cancer cell death. In the present study, we describe the synthesis and the anti-cancer activity of sixteen novel alkoxyamines that contain an imidazole ring. Activation of the homolysis was conducted by protonation and/or methylation. These new molecules displayed cytotoxic activities towards human glioblastoma cell lines, including the U251-MG cells that are highly resistant to the conventional chemotherapeutic agent Temozolomide. We further showed that the biological activities of the alkoxyamines were not only related to their half-life times of homolysis. We lastly identified the alkoxyamine ( RS/SR)-4a, with both a high antitumour activity and favourable logD(7.4) and pK(a) values, which make it a robust candidate for blood-brain barrier penetrating therapeutics against brain neoplasia

    In-situ temperature monitoring with photoacoustics during photothermal therapy and perspectives for glioblastoma treatment monitoring

    No full text
    International audienceIn situ temperature monitoring with photoacoustic measurements is introduced in an integrated setup, specifically designed for photothermotherapy treatmentof the glioblastoma, aided by nanoparticles and HIFU blood-brain barrier opening

    In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles.

    No full text
    International audienceCapable of generating plasmonic and other effects, gold nanostructures can offer a variety of diagnostic and therapy functionalities for biomedical applications, but conventional chemically-synthesized Au nanomaterials cannot always match stringent requirements for toxicity levels and surface conditioning. Laser-synthesized Au nanoparticles (Aunp) present a viable alternative to chemical counterparts and can offer exceptional purity (no trace of contaminants) and unusual surface chemistry making possible direct conjugation with biocompatible polymers (dextran, polyethylene glycol). this work presents the first pharmacokinetics, biodistribution and safety study of laser-ablated dextran-coated Aunp (Aunpd) under intravenous administration in small animal model. our data show that Aunpd are rapidly eliminated from the blood circulation and accumulated preferentially in liver and spleen, without inducing liver or kidney toxicity, as confirmed by the plasmatic ALAT and ASAT activities, and creatininemia values. Despite certain residual accumulation in tissues, we did not detect any sign of histological damage or inflammation in tissues, while IL-6 level confirmed the absence of any chronic inflammation. The safety of AuNPd was confirmed by healthy behavior of animals and the absence of acute and chronic toxicities in liver, spleen and kidneys. our results demonstrate that laser-synthesized Aunp are safe for biological systems, which promises their successful biomedical applications
    • …
    corecore