540 research outputs found

    Periods implying almost all periods, trees with snowflakes, and zero entropy maps

    Full text link
    Let XX be a compact tree, ff be a continuous map from XX to itself, End(X)End(X) be the number of endpoints and Edg(X)Edg(X) be the number of edges of XX. We show that if n>1n>1 has no prime divisors less than End(X)+1End(X)+1 and ff has a cycle of period nn, then ff has cycles of all periods greater than 2End(X)(n1)2End(X)(n-1) and topological entropy h(f)>0h(f)>0; so if pp is the least prime number greater than End(X)End(X) and ff has cycles of all periods from 1 to 2End(X)(p1)2End(X)(p-1), then ff has cycles of all periods (this verifies a conjecture of Misiurewicz for tree maps). Together with the spectral decomposition theorem for graph maps it implies that h(f)>0h(f)>0 iff there exists nn such that ff has a cycle of period mnmn for any mm. We also define {\it snowflakes} for tree maps and show that h(f)=0h(f)=0 iff every cycle of ff is a snowflake or iff the period of every cycle of ff is of form 2lm2^lm where mEdg(X)m\le Edg(X) is an odd integer with prime divisors less than End(X)+1End(X)+1

    Dynamical consequences of a free interval: minimality, transitivity, mixing and topological entropy

    Full text link
    We study dynamics of continuous maps on compact metrizable spaces containing a free interval (i.e., an open subset homeomorphic to an open interval). A special attention is paid to relationships between topological transitivity, weak and strong topological mixing, dense periodicity and topological entropy as well as to the topological structure of minimal sets. In particular, a trichotomy for minimal sets and a dichotomy for transitive maps are proved.Comment: 21 page
    corecore