301 research outputs found

    Fabrication and development of polarisation maintaining fibres using gas phase etching

    Full text link
    Polarisation-maintaining fibres are of considerable interest in the field of optical fibre sensors because of their ability to transmit either of the two orthogonal li early polarised modes over long distances - an extinction ratio of 20dB in 5km of PANDA fibre has been reported (Hosaka et a1 (I)). The fibres owe their polarisation holding performance to the high levels of birefringence designed into the structure. Although the form birefringence of an elliptical core can be used (Dyott et a1 (2)), the fibres are usually made birefringent by doping the silica on either side of the core with materials having different expansion coefficients. The resulting fibre has a birefringence proportional to the anisotropic stress across the core, whose magnitude depends upon the expansion coefficient mismatch and fibre geometry. In this paper, the optimum structure for a polarisation-maintaining fibre is first designed and then a process to make it is described together with typical performance figures. Finally, two techniques are described to enhance the already high levels of birefringence obtainable, and experimental results are given which show how short lengths of fibre can be used as a high extinction polariser, while long lengths of fibre can be used for the transmission of linearly polarised light aligned to one of the axes only - the other linearly polarised mode being suppressed

    Electromagnetic Polarization Effects due to Axion Photon Mixing

    Full text link
    We investigate the effect of axions on the polarization of electromagnetic waves as they propagate through astronomical distances. We analyze the change in the dispersion of the electromagnetic wave due to its mixing with axions. We find that this leads to a shift in polarization and turns out to be the dominant effect for a wide range of frequencies. We analyze whether this effect or the decay of photons into axions can explain the large scale anisotropies which have been observed in the polarizations of quasars and radio galaxies. We also comment on the possibility that the axion-photon mixing can explain the dimming of distant supernovae.Comment: 18 pages, 1 figur

    Pressure-dependence of electron-phonon coupling and the superconducting phase in hcp Fe - a linear response study

    Full text link
    A recent experiment by Shimizu et al. has provided evidence of a superconducting phase in hcp Fe under pressure. To study the pressure-dependence of this superconducting phase we have calculated the phonon frequencies and the electron-phonon coupling in hcp Fe as a function of the lattice parameter, using the linear response (LR) scheme and the full potential linear muffin-tin orbital (FP-LMTO) method. Calculated phonon spectra and the Eliashberg functions α2F\alpha^2 F indicate that conventional s-wave electron-phonon coupling can definitely account for the appearance of the superconducting phase in hcp Fe. However, the observed change in the transition temperature with increasing pressure is far too rapid compared with the calculated results. For comparison with the linear response results, we have computed the electron-phonon coupling also by using the rigid muffin-tin (RMT) approximation. From both the LR and the RMT results it appears that electron-phonon interaction alone cannot explain the small range of volume over which superconductivity is observed. It is shown that ferromagnetic/antiferromagnetic spin fluctuations as well as scattering from magnetic impurities (spin-ordered clusters) can account for the observed values of the transition temperatures but cannot substantially improve the agreeemnt between the calculated and observed presure/volume range of the superconducting phase. A simplified treatment of p-wave pairing leads to extremely small (≀10−2\leq 10^{-2} K) transition temperatures. Thus our calculations seem to rule out both ss- and pp- wave superconductivity in hcp Fe.Comment: 12 pages, submitted to PR

    Titan's cold case files - Outstanding questions after Cassini-Huygens

    Get PDF
    Abstract The entry of the Cassini-Huygens spacecraft into orbit around Saturn in July 2004 marked the start of a golden era in the exploration of Titan, Saturn's giant moon. During the Prime Mission (2004–2008), ground-breaking discoveries were made by the Cassini orbiter including the equatorial dune fields (flyby T3, 2005), northern lakes and seas (T16, 2006), and the large positive and negative ions (T16 & T18, 2006), to name a few. In 2005 the Huygens probe descended through Titan's atmosphere, taking the first close-up pictures of the surface, including large networks of dendritic channels leading to a dried-up seabed, and also obtaining detailed profiles of temperature and gas composition during the atmospheric descent. The discoveries continued through the Equinox Mission (2008–2010) and Solstice Mission (2010–2017) totaling 127 targeted flybys of Titan in all. Now at the end of the mission, we are able to look back on the high-level scientific questions from the start of the mission, and assess the progress that has been made towards answering these. At the same time, new scientific questions regarding Titan have emerged from the discoveries that have been made. In this paper we review a cross-section of important scientific questions that remain partially or completely unanswered, ranging from Titan's deep interior to the exosphere. Our intention is to help formulate the science goals for the next generation of planetary missions to Titan, and to stimulate new experimental, observational and theoretical investigations in the interim

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Early diagnosis is associated with improved clinical outcomes in benign esophageal perforation: an individual patient data meta-anal

    Get PDF
    Background: Time of diagnosis (TOD) of benign esophageal perforation is regarded as an important risk factor for clinical outcome, although convincing evidence is lacking. The aim of this study is to assess whether time between onset of perforation and diagnosis is associated with clinical outcome in patients with iatrogenic esophageal perforation (IEP) and Boerhaave’s syndrome (BS). Methods: We searched MEDLINE, Embase and Cochrane library through June 2018 to identify studies. Authors were invited to share individual patient data and a meta-analysis was performed (PROSPERO: CRD42018093473). Patients were subdivided in early (≀ 24 h) and late (> 24 h) TOD and compared with mixed effects multivariable analysis while adjusting age, gender, location of perforation, initial treatment and center. Primary outcome was overall mortality. Secondary outcomes were length of hospital stay, re-interventions and ICU admission. Results: Our meta-analysis included IPD of 25 studies including 576 patients with IEP and 384 with BS. In IEP, early TOD was not associated with overall mortality (8% vs. 13%, OR 2.1, 95% CI 0.8–5.1), but was associated with a 23% decrease in ICU admissions (46% vs. 69%, OR 3.0, 95% CI 1.2–7.2), a 22% decrease in re-interventions (23% vs. 45%, OR 2.8, 95% CI 1.2–6.7) and a 36% decrease in length of hospital stay (14 vs. 22 days, p 24 h) in benign esophageal perforations, particularly in IEP, is associated with improved clinical outcome
    • 

    corecore