106 research outputs found

    An Accurate PSO-GA Based Neural Network to Model Growth of Carbon Nanotubes

    Full text link
    © 2017 Mohsen Asadnia et al. By combining particle swarm optimization (PSO) and genetic algorithms (GA) this paper offers an innovative algorithm to train artificial neural networks (ANNs) for the purpose of calculating the experimental growth parameters of CNTs. The paper explores experimentally obtaining data to train ANNs, as a method to reduce simulation time while ensuring the precision of formal physics models. The results are compared with conventional particle swarm optimization based neural network (CPSONN) and Levenberg-Marquardt (LM) techniques. The results show that PSOGANN can be successfully utilized for modeling the experimental parameters that are critical for the growth of CNTs

    A stripline-based planar wideband feed for high-gain antennas with partially reflecting superstructure

    Get PDF
    © 2019 by the authors. This paper presents a new planar feeding structure for wideband resonant-cavity antennas (RCAs). The feeding structure consists of two stacked dielectric slabs with an air-gap in between. A U-shaped slot, etched in the top metal-cladding over the upper dielectric slab, is fed by a planar stripline printed on the back side of the dielectric slab. The lower dielectric slab backed by a ground plane, is used to reduce back radiation. To validate the wideband performance of the new structure, in an RCA configuration, it was integrated with a wideband all-dielectric single-layer partially reflecting superstructure (PRS) with a transverse permittivity gradient (TPG). The single-layer RCA fed by the U-slot feeding structure demonstrated a peak directivity of 18.5 dBi with a 3 dB directivity bandwidth of 32%. An RCA prototype was fabricated and experimental results are presented

    Experimental and numerical study of elasto-inertial focusing in straight channels.

    Full text link
    Elasto-inertial microfluidics has drawn significant attention in recent years due to its enhanced capabilities compared to pure inertial systems in control of small microparticles. Previous investigations have focused mainly on the applications of elasto-inertial sorting, rather than studying its fundamentals. This is because of the complexity of simulation and analysis, due to the presence of viscoelastic force. There have been some investigative efforts on the mechanisms of elasto-inertial focusing in straight channels; however, these studies were limited to simple rectangular channels and neglected the effects of geometry and flow rates on focusing positions. Herein, for the first time, we experimentally and numerically explore the effects of elasticity accompanying channel cross-sectional geometry and sample flow rates on the focusing phenomenon in elasto-inertial systems. The results reveal that increasing the aspect ratio weakens the elastic force more than inertial force, causing a transition from one focusing position to two. In addition, they show that increasing the angle of a channel corner causes the elastic force to push the particles more efficiently toward the center over a larger area of the channel cross section. Following on from this, we proposed a new complex straight channel which demonstrates a tighter focusing band compared to other channel geometries. Finally, we focused Saccharomyces cerevisiae cells (3-5 μm) in the complex channel to showcase its capability in focusing small-size particles. We believe that this research work improves the understanding of focusing mechanisms in viscoelastic solutions and provides useful insights into the design of elasto-inertial microfluidic devices

    Development of a Biomimetic Semicircular Canal with MEMS Sensors to Restore Balance

    Full text link
    © 2001-2012 IEEE. A third of adults over the age of 50 suffer from chronic impairment of balance, posture, and/or gaze stability due to partial or complete impairment of the sensory cells in the inner ear responsible for these functions. The consequences of impaired balance organ can be dizziness, social withdrawal, and acceleration of the further functional decline. Despite the significant progress in biomedical sensing technologies, current artificial vestibular systems fail to function in practical situations and in very low frequencies. Herein, we introduced a novel biomechanical device that closely mimics the human vestibular system. A microelectromechanical systems (MEMS) flow sensor was first developed to mimic the vestibular haircell sensors. The sensor was then embedded into a three-dimensional (3D) printed semicircular canal and tested at various angular accelerations in the frequency range from 0.5Hz to 1.5Hz. The miniaturized device embedded into a 3D printed model will respond to mechanical deflections and essentially restore the sense of balance in patients with vestibular dysfunctions. The experimental and simulation studies of semicircular canal presented in this work will pave the way for the development of balance sensory system, which could lead to the design of a low-cost and commercially viable medical device with significant health benefits and economic potential

    Upregulation of PD-L1 expression in breast cancer cells through the formation of 3D multicellular cancer aggregates under different chemical and mechanical conditions

    Full text link
    © 2019 Elsevier B.V. Expression of programmed death-ligand 1 (PD-L1) in cancer cells plays an important role in cancer-immune cell interaction. The emerging evidence suggests regulation of PD-L1 expression by several tumor microenvironmental cues. However, the association of PD-L1 expression with chemical and mechanical features of the tumor microenvironment, specifically epidermal growth factor receptor (EGFR) signaling and matrix stiffness, remains elusive. Herein, we determine whether EGFR targeting and substrate stiffness affect the regulation of PD-L1 expression. Breast carcinoma cell lines, MCF7 and MDA-MB-231, were cultured under different conditions targeting EGFR and exposing cells to distinct substrate stiffness to evaluate PD-L1 expression. Furthermore, the ability to form aggregates in short-term culture of breast carcinoma cells and its effect on expression level of PD-L1 was probed. Our results indicated that PD-L1 expression was altered in response to both EGFR inhibition and substrate stiffness. Additionally, a positive association between the formation of multicellular aggregates and PD-L1 expression was observed. MDA-MB-231 cells expressed the highest PD-L1 level on a stiff substrate, while inhibition of EGFR reduced expression of PD-L1. The results suggested that both physical and chemical features of tumor microenvironment regulate PD-L1 expression through alteration of tumor aggregate formation potential. In line with these results, the in-silico study highlighted a positive correlation between PD-L1 expression, EGFR signaling, epithelial to mesenchymal transition related transcription factors (EMT-TFs) and stemness markers in metastatic breast cancer. These findings improve our understanding of regulation of PD-L1 expression by tumor microenvironment leading to evasion of tumor cells from the immune system

    From Biological Cilia to Artificial Flow Sensors: Biomimetic Soft Polymer Nanosensors with High Sensing Performance.

    Full text link
    We report the development of a new class of miniature all-polymer flow sensors that closely mimic the intricate morphology of the mechanosensory ciliary bundles in biological hair cells. An artificial ciliary bundle is achieved by fabricating bundled polydimethylsiloxane (PDMS) micro-pillars with graded heights and electrospinning polyvinylidenefluoride (PVDF) piezoelectric nanofiber tip links. The piezoelectric nature of a single nanofiber tip link is confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Rheology and nanoindentation experiments are used to ensure that the viscous properties of the hyaluronic acid (HA)-based hydrogel are close to the biological cupula. A dome-shaped HA hydrogel cupula that encapsulates the artificial hair cell bundle is formed through precision drop-casting and swelling processes. Fluid drag force actuates the hydrogel cupula and deflects the micro-pillar bundle, stretching the nanofibers and generating electric charges. Functioning with principles analogous to the hair bundles, the sensors achieve a sensitivity and threshold detection limit of 300 mV/(m/s) and 8 μm/s, respectively. These self-powered, sensitive, flexible, biocompatibale and miniaturized sensors can find extensive applications in navigation and maneuvering of underwater robots, artificial hearing systems, biomedical and microfluidic devices

    Fabrication of unconventional inertial microfluidic channels using wax 3D printing.

    Full text link
    Inertial microfluidics has emerged over the past decade as a powerful tool to accurately control cells and microparticles for diverse biological and medical applications. Many approaches have been proposed to date in order to increase the efficiency and accuracy of inertial microfluidic systems. However, the effects of channel cross-section and solution properties (Newtonian or non-Newtonian) have not been fully explored, primarily due to limitations in current microfabrication methods. In this study, we overcome many of these limitations using wax 3D printing technology and soft lithography through a novel workflow, which eliminates the need for the use of silicon lithography and polydimethylsiloxane (PDMS) bonding. We have shown that by adding dummy structures to reinforce the main channels, optimizing the gap between the dummy and main structures, and dissolving the support wax on a PDMS slab to minimize the additional handling steps, one can make various non-conventional microchannels. These substantially improve upon previous wax printed microfluidic devices where the working area falls into the realm of macrofluidics rather than microfluidics. Results revealed a surface roughness of 1.75 μm for the printed channels, which does not affect the performance of inertial microfluidic devices used in this study. Channels with complex cross-sections were fabricated and then analyzed to investigate the effects of viscoelasticity and superposition on the lateral migration of the particles. Finally, as a proof of concept, microcarriers were separated from human mesenchymal stem cells using an optimized channel with maximum cell-holding capacity, demonstrating the suitability of these microchannels in the bioprocessing industry

    3D Printing of Inertial Microfluidic Devices.

    Full text link
    Inertial microfluidics has been broadly investigated, resulting in the development of various applications, mainly for particle or cell separation. Lateral migrations of these particles within a microchannel strictly depend on the channel design and its cross-section. Nonetheless, the fabrication of these microchannels is a continuous challenging issue for the microfluidic community, where the most studied channel cross-sections are limited to only rectangular and more recently trapezoidal microchannels. As a result, a huge amount of potential remains intact for other geometries with cross-sections difficult to fabricate with standard microfabrication techniques. In this study, by leveraging on benefits of additive manufacturing, we have proposed a new method for the fabrication of inertial microfluidic devices. In our proposed workflow, parts are first printed via a high-resolution DLP/SLA 3D printer and then bonded to a transparent PMMA sheet using a double-coated pressure-sensitive adhesive tape. Using this method, we have fabricated and tested a plethora of existing inertial microfluidic devices, whether in a single or multiplexed manner, such as straight, spiral, serpentine, curvilinear, and contraction-expansion arrays. Our characterizations using both particles and cells revealed that the produced chips could withstand a pressure up to 150 psi with minimum interference of the tape to the total functionality of the device and viability of cells. As a showcase of the versatility of our method, we have proposed a new spiral microchannel with right-angled triangular cross-section which is technically impossible to fabricate using the standard lithography. We are of the opinion that the method proposed in this study will open the door for more complex geometries with the bespoke passive internal flow. Furthermore, the proposed fabrication workflow can be adopted at the production level, enabling large-scale manufacturing of inertial microfluidic devices

    ZIF-8 Modified Polypropylene Membrane: A Biomimetic Cell Culture Platform with a View to the Improvement of Guided Bone Regeneration.

    Full text link
    PurposeDespite the significant advances in modeling of biomechanical aspects of cell microenvironment, it remains a major challenge to precisely mimic the physiological condition of the particular cell niche. Here, the metal-organic frameworks (MOFs) have been introduced as a feasible platform for multifactorial control of cell-substrate interaction, given the wide range of physical and mechanical properties of MOF materials and their structural flexibility.ResultsIn situ crystallization of zeolitic imidazolate framework-8 (ZIF-8) on the polydopamine (PDA)-modified membrane significantly raised surface energy, wettability, roughness, and stiffness of the substrate. This modulation led to an almost twofold increment in the primary attachment of dental pulp stem cells (DPSCs) compare to conventional plastic culture dishes. The findings indicate that polypropylene (PP) membrane modified by PDA/ZIF-8 coating effectively supports the growth and proliferation of DPSCs at a substantial rate. Further analysis also displayed the exaggerated multilineage differentiation of DPSCs with amplified level of autocrine cell fate determination signals, like BSP1, BMP2, PPARG, FABP4, ACAN, and COL2A. Notably, osteogenic markers were dramatically overexpressed (more than 100-folds rather than tissue culture plate) in response to biomechanical characteristics of the ZIF-8 layer.ConclusionHence, surface modification of cell culture platforms with MOF nanostructures proposed as a powerful nanomedical approach for selectively guiding stem cells for tissue regeneration. In particular, PP/PDA/ZIF-8 membrane presented ideal characteristics for using as a barrier membrane for guided bone regeneration (GBR) in periodontal tissue engineering

    A rapid co-culture stamping device for studying intercellular communication.

    Full text link
    Regulation of tissue development and repair depends on communication between neighbouring cells. Recent advances in cell micro-contact printing and microfluidics have facilitated the in-vitro study of homotypic and heterotypic cell-cell interaction. Nonetheless, these techniques are still complicated to perform and as a result, are seldom used by biologists. We report here development of a temporarily sealed microfluidic stamping device which utilizes a novel valve design for patterning two adherent cell lines with well-defined interlacing configurations to study cell-cell interactions. We demonstrate post-stamping cell viability of >95%, the stamping of multiple adherent cell types, and the ability to control the seeded cell density. We also show viability, proliferation and migration of cultured cells, enabling analysis of co-culture boundary conditions on cell fate. We also developed an in-vitro model of endothelial and cardiac stem cell interactions, which are thought to regulate coronary repair after myocardial injury. The stamp is fabricated using microfabrication techniques, is operated with a lab pipettor and uses very low reagent volumes of 20 μl with cell injection efficiency of >70%. This easy-to-use device provides a general strategy for micro-patterning of multiple cell types and will be important for studying cell-cell interactions in a multitude of applications