29 research outputs found

    The Affine Structure of Gravitational Theories: Symplectic Groups and Geometry

    Full text link
    We give a geometrical description of gravitational theories from the viewpoint of symmetries and affine structure. We show how gravity, considered as a gauge theory, can be consistently achieved by the nonlinear realization of the conformal-affine group in an indirect manner: due the partial isomorphism between CA(3,1)CA\left( 3,1\right) and the centrally extended Sp(8)Sp\left( 8\right) , we perform a nonlinear realization of the centrally extended (CE)Sp(8)Sp\left( 8\right) in its semi-simple version. In particular, starting from the bundle structure of gravity, we derive the conformal-affine Lie algebra and then, by the non-linear realization, we define the coset field transformations, the Cartan forms and the inverse Higgs constraints. Finally we discuss the geometrical Lagrangians where all the information on matter fields and their interactions can be contained.Comment: 21 pages. arXiv admin note: text overlap with arXiv:0910.2881, arXiv:0705.460

    Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ

    Get PDF
    The extended gamma ray source MGRO J1908+06, discovered by the Milagro air shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ experiment at TeV energies, with a statistical significance of 6.2 standard deviations. The peak of the signal is found at a position consistent with the pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees, consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54 \pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured gamma ray flux is consistent with the results of the Milagro detector, but is 2-3 times larger than the flux previously derived by H.E.S.S. at energies of a few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable excess rate observed by ARGO-YBJ along 4 years of data taking support the identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula of PSR J1907+0602, with an integrated luminosity above 1 TeV about 1.8 times the Crab Nebula luminosity.Comment: 6 pages, accepted for pubblication by ApJ. Replaced to correct the author lis

    Long-term Monitoring on Mrk 501 for Its VHE gamma Emission and a Flare in October 2011

    Get PDF
    As one of the brightest active blazars in both X-ray and very high energy γ\gamma-ray bands, Mrk 501 is very useful for physics associated with jets from AGNs. The ARGO-YBJ experiment is monitoring it for γ\gamma-rays above 0.3 TeV since November 2007. Starting from October 2011 the largest flare since 2005 is observed, which lasts to about April 2012. In this paper, a detailed analysis is reported. During the brightest γ\gamma-rays flaring episodes from October 17 to November 22, 2011, an excess of the event rate over 6 σ\sigma is detected by ARGO-YBJ in the direction of Mrk 501, corresponding to an increase of the γ\gamma-ray flux above 1 TeV by a factor of 6.6±\pm2.2 from its steady emission. In particular, the γ\gamma-ray flux above 8 TeV is detected with a significance better than 4 σ\sigma. Based on time-dependent synchrotron self-Compton (SSC) processes, the broad-band energy spectrum is interpreted as the emission from an electron energy distribution parameterized with a single power-law function with an exponential cutoff at its high energy end. The average spectral energy distribution for the steady emission is well described by this simple one-zone SSC model. However, the detection of γ\gamma-rays above 8 TeV during the flare challenges this model due to the hardness of the spectra. Correlations between X-rays and γ\gamma-rays are also investigated.Comment: have been accepted for publication at Ap
    corecore