10 research outputs found

    The Artemiside-Artemisox-Artemisone-M1 Tetrad: Efficacies against Blood Stage P. falciparum Parasites, DMPK Properties, and the Case for Artemiside

    Get PDF
    Because of the need to replace the current clinical artemisinins in artemisinin combination therapies, we are evaluating fitness of amino-artemisinins for this purpose. These include the thiomorpholine derivative artemiside obtained in one scalable synthetic step from dihydroartemisinin (DHA) and the derived sulfone artemisone. We have recently shown that artemiside undergoes facile metabolism via the sulfoxide artemisox into artemisone and thence into the unsaturated metabolite M1; DHA is not a metabolite. Artemisox and M1 are now found to be approximately equipotent with artemiside and artemisone in vitro against asexual P. falciparum (Pf) blood stage parasites (IC50 1.5–2.6 nM). Against Pf NF54 blood stage gametocytes, artemisox is potently active (IC50 18.9 nM early-stage, 2.7 nM late-stage), although against the late-stage gametocytes, activity is expressed, like other amino-artemisinins, at a prolonged incubation time of 72 h. Comparative drug metabolism and pharmacokinetic (DMPK) properties were assessed via po and iv administration of artemiside, artemisox, and artemisone in a murine model. Following oral administration, the composite Cmax value of artemiside plus its metabolites artemisox and artemisone formed in vivo is some 2.6-fold higher than that attained following administration of artemisone alone. Given that efficacy of short half-life rapidly-acting antimalarial drugs such as the artemisinins is associated with Cmax, it is apparent that artemiside will be more active than artemisone in vivo, due to additive effects of the metabolites. As is evident from earlier data, artemiside indeed possesses appreciably greater efficacy in vivo against murine malaria. Overall, the higher exposure levels of active drug following administration of artemiside coupled with its synthetic accessibility indicate it is much the preferred drug for incorporation into rational new artemisinin combination therapies

    UCT943, a next generation Plasmodium falciparum PI4K inhibitor preclinical candidate for the treatment of malaria

    Get PDF
    The 2-aminopyridine MMV048 was the first drug candidate inhibiting; Plasmodium; phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant; Plasmodium falciparum; and; Plasmodium vivax; clinical isolates. Excellent; in vitro; antiplasmodial activity translated into high efficacy in; Plasmodium berghei; and humanized; P. falciparum; NOD-; scid IL-2R; γ; null; mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate; in vivo; intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation; Plasmodium; PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria

    Structure-activity relationship studies and Plasmodium life cycle profiling identifies pan-active N-aryl-3-trifluoromethyl pyrido[1,2-a]benzimidazoles which are efficacious in an in vivo mouse model of malaria

    No full text
    Structure-activity relationship studies involving N-aryl-3-trifluoromethyl pyrido[1,2-a] benzimidazoles (PBI) identified several compounds possessing potent in vitro activities against the asexual blood, liver and gametocyte stages of the Plasmodium parasite with no cross-resistance to chloroquine. Frontrunner lead compounds with good in vitro absorption, distribution, metabolism and excretion (ADME) profiles were subjected to in vivo proof-of-concept studies in NMRI mice harboring the rodent P. berghei infection. This led to the identification of compounds 10 and 49, effecting 98% and 99.93% reduction in parasitemia with mean survival days of 12 and 14, respectively, at an oral dose of 4x50 mg/kg. In vivo pharmacokinetics studies on 10 revealed slow absorption, low volume of distribution and low clearance profiles. Furthermore, this series displayed low propensity to inhibit the human ether-a-go-go-related gene (hERG) potassium ion channel whose inhibition is associated with cardiotoxicity

    Multistage antiplasmodium activity of astemizole analogues and inhibition of hemozoin formation as a contributor to their mode of action

    No full text
    A drug repositioning approach was leveraged to derivatize astemizole (AST), an antihistamine drug whose antimalarial activity was previously identified in a high-throughput screen. The multistage activity potential against the Plasmodium parasite's life cycle of the subsequent analogues was examined by evaluating against the parasite asexual blood, liver, and sexual gametocytic stages. In addition, the previously reported contribution of heme detoxification to the compound's mode of action was interrogated. Ten of the 17 derivatives showed half-maximal inhibitory concentrations (IC; 50; s) of <0.1 μM against the chloroquine (CQ)-sensitive Plasmodium falciparum NF54 ( PfNF54) strain while maintaining submicromolar potency against the multidrug-resistant strain, PfK1, with most showing low likelihood of cross-resistance with CQ. Selected analogues ( PfNF54-IC; 50; < 0.1 μM) were tested for cytotoxicity on Chinese hamster ovarian (CHO) cells and found to be highly selective (selectivity index > 100). Screening of AST and its analogues against gametocytes revealed their moderate activity (IC; 50; : 1-5 μM) against late stage P. falciparum gametocytes, while the evaluation of activity against P. berghei liver stages identified one compound (3) with 3-fold greater activity than the parent AST compound. Mechanistic studies showed a strong correlation between in vitro inhibition of β-hematin formation by the AST derivatives and their antiplasmodium IC; 50; s. Analyses of intracellular inhibition of hemozoin formation within the parasite further yielded signatures attributable to a possible perturbation of the heme detoxification machinery

    Synthesis and Testing of Analogs of the Tuberculosis Drug SQ109 Against Bacteria and Protozoa: Identification of Lead Compounds Against Mycobacterium abscessus and Malaria

    No full text
    SQ109 is a tuberculosis drug candidate that has high potency against Mycobacterium tuberculosis and is thought to function at least in part by blocking cell wall biosynthesis by inhibiting the MmpL3 transporter. It also has activity against bacteria and protozoan parasites that lack MmpL3, where it can act as an uncoupler, targeting lipid membranes and Ca2+ homeostasis. Here, we synthesized 19 analogs of SQ109 and tested them against bacteria: M. smegmatis, M. tuberculosis, M. abscessus, Bacillus subtilis and Escherichia coli, as well as against the protozoan parasites, Trypanosoma brucei, T. cruzi, Leishmania donovani, L. mexicana and Plasmodium falciparum. Activity against the mycobacteria was generally less than with SQ109 and was reduced by increasing the size of the alkyl adduct, but two analogs were ~4-8 fold more active than was SQ109 against M. abscessus, including a highly drug resistant strain harboring a A309P mutation in MmpL3. There was also better activity than found with SQ109 with other bacteria and protozoa. Of particular interest, we found that the adamantyl C-2 ethyl, butyl, phenyl and benzyl analogs had 4-10x increased activity against P. falciparum asexual blood stages, together with low toxicity to a human HepG2 cell line, making them of interest as new anti-malarial drug leads. We also used surface plasmon resonance to investigate the binding of inhibitors to MmpL3, and differential scanning calorimetry to investigate binding to lipid membranes. There was no correlation between MmpL3 binding and M. tuberculosis or M. smegmatis cell activity, suggesting that MmpL3 is not a major target, in mycobacteria. However, some of the more active species decreased lipid phase transition temperatures, indicating increased accumulation in membranes, expected to lead to enhanced uncoupler activity
    corecore