6,970 research outputs found
The power-series algorithm applied to polling systems with a dormant server
Polling Systems;Queueing Theory
Optimization of polling systems with Bernoulli schedules
Optimization;Polling Systems;Queueing Theory;operations research
Waiting times in queueing networks with a single shared server
We study a queueing network with a single shared server that serves the
queues in a cyclic order. External customers arrive at the queues according to
independent Poisson processes. After completing service, a customer either
leaves the system or is routed to another queue. This model is very generic and
finds many applications in computer systems, communication networks,
manufacturing systems, and robotics. Special cases of the introduced network
include well-known polling models, tandem queues, systems with a waiting room,
multi-stage models with parallel queues, and many others. A complicating factor
of this model is that the internally rerouted customers do not arrive at the
various queues according to a Poisson process, causing standard techniques to
find waiting-time distributions to fail. In this paper we develop a new method
to obtain exact expressions for the Laplace-Stieltjes transforms of the
steady-state waiting-time distributions. This method can be applied to a wide
variety of models which lacked an analysis of the waiting-time distribution
until now
Fluid Approximation of a Call Center Model with Redials and Reconnects
In many call centers, callers may call multiple times. Some of the calls are
re-attempts after abandonments (redials), and some are re-attempts after
connected calls (reconnects). The combination of redials and reconnects has not
been considered when making staffing decisions, while ignoring them will
inevitably lead to under- or overestimation of call volumes, which results in
improper and hence costly staffing decisions. Motivated by this, in this paper
we study call centers where customers can abandon, and abandoned customers may
redial, and when a customer finishes his conversation with an agent, he may
reconnect. We use a fluid model to derive first order approximations for the
number of customers in the redial and reconnect orbits in the heavy traffic. We
show that the fluid limit of such a model is the unique solution to a system of
three differential equations. Furthermore, we use the fluid limit to calculate
the expected total arrival rate, which is then given as an input to the Erlang
A model for the purpose of calculating service levels and abandonment rates.
The performance of such a procedure is validated in the case of single
intervals as well as multiple intervals with changing parameters
- …