243 research outputs found

    Basic residues R260 and K357 affect the conformational dynamics of the major facilitator superfamily multidrug transporter LmrP.

    Get PDF
    Secondary-active multidrug transporters can confer resistance on cells to pharmaceuticals by mediating their extrusion away from intracellular targets via substrate/H(+)(Na(+)) antiport. While the interactions of catalytic carboxylates in these transporters with coupling ions and substrates (drugs) have been studied in some detail, the functional importance of basic residues has received much less attention. The only two basic residues R260 and K357 in transmembrane helices in the Major Facilitator Superfamily transporter LmrP from Lactococcus lactis are present on the outer surface of the protein, where they are exposed to the phospholipid head group region of the outer leaflet (R260) and inner leaflet (K357) of the cytoplasmic membrane. Although our observations on the proton-motive force dependence and kinetics of substrate transport, and substrate-dependent proton transport demonstrate that K357A and R260A mutants are affected in ethidium-proton and benzalkonium-proton antiport compared to wildtype LmrP, our findings suggest that R260 and K357 are not directly involved in the binding of substrates or the translocation of protons. Secondary-active multidrug transporters are thought to operate by a mechanism in which binding sites for substrates are alternately exposed to each face of the membrane. Disulfide crosslinking experiments were performed with a double cysteine mutant of LmrP that reports the substrate-stimulated transition from the outward-facing state to the inward-facing state with high substrate-binding affinity. In the experiments, the R260A and K357A mutations were found to influence the dynamics of these major protein conformations in the transport cycle, potentially by removing the interactions of R260 and K357 with phospholipids and/or other residues in LmrP. The R260A and K357A mutations therefore modify the maximum rate at which the transport cycle can operate and, as the transitions between conformational states are differently affected by components of the proton-motive force, the mutations also influence the energetics of transport

    Energetics and Mechanism of Drug Transport Mediated by the Lactococcal Multidrug Transporter LmrP

    Get PDF
    The gene encoding the secondary multidrug transporter LmrP of Lactococcus lactis was heterologously expressed in Escherichia coli. The energetics and mechanism of drug extrusion mediated by LmrP were studied in membrane vesicles of E. coli. LmrP-mediated extrusion of tetraphenyl phosphonium (TPP+) from right-side-out membrane vesicles and uptake of the fluorescent membrane probe 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) into inside-out membrane vesicles are driven by the membrane potential (Δψ) and the transmembrane proton gradient (ΔpH), pointing to an electrogenic drug/proton antiport mechanism. Ethidium bromide, a substrate for LmrP, inhibited the LmrP-mediated TPP+ extrusion from right-sideout membrane vesicles, showing that LmrP is capable of transporting structurally unrelated drugs. Kinetic analysis of LmrP-mediated TMA-DPH transport revealed a direct relation between the transport rate and the amount of TMA-DPH associated with the cytoplasmic leaflet of the lipid bilayer. This observation indicates that drugs are extruded from the inner leaflet of the cytoplasmic membrane into the external medium. This is the first report that shows that drug extrusion by a secondary multidrug resistance (MDR) transporter occurs by a “hydrophobic vacuum cleaner” mechanism in a similar way as was proposed for the primary lactococcal MDR transporter, LmrA.

    Crystal structure of tripartite-type ABC transporter MacB from Acinetobacter baumannii.

    Get PDF
    The MacA-MacB-TolC tripartite complex is a transmembrane machine that spans both plasma membrane and outer membrane and actively extrudes substrates, including macrolide antibiotics, virulence factors, peptides and cell envelope precursors. These transport activities are driven by the ATPase MacB, a member of the ATP-binding cassette (ABC) superfamily. Here, we present the crystal structure of MacB at 3.4-Å resolution. MacB forms a dimer in which each protomer contains a nucleotide-binding domain and four transmembrane helices that protrude in the periplasm into a binding domain for interaction with the membrane fusion protein MacA. MacB represents an ABC transporter in pathogenic microorganisms with unique structural features

    Structure, mechanism and cooperation of bacterial multidrug transporters.

    Get PDF
    Cells from all domains of life encode energy-dependent trans-membrane transporters that can expel harmful substances including clinically applied therapeutic agents. As a collective body, these transporters perform as a super-system that confers tolerance to an enormous range of harmful compounds and consequently aid survival in hazardous environments. In the Gram-negative bacteria, some of these transporters serve as energy-transducing components of tripartite assemblies that actively efflux drugs and other harmful compounds, as well as deliver virulence agents across the entire cell envelope. We draw together recent structural and functional data to present the current models for the transport mechanisms for the main classes of multi-drug transporters and their higher-order assemblies.BL and DD are supported by the Medical Research Council (MRC), Human Frontiers Science Program (HFSP), and the Wellcome Trust. Work in the Van Veen lab is supported by the Biotechnology and Biological Sciences Research Council (BBSRC), MRC, HFSP, Royal Society, Society for Antimicrobial Chemotherapy (BSAC), Herchel Smith Foundation, and Commonwealth Trust. Work in the Pos lab is supported by the German Research Foundation (SFB 807, Transport and Communication across Biological Membranes and FOR2251, Adaptation and persistence of the emerging pathogen Acinetobacter baumannii), the DFG-EXC115 (Cluster of Excellence Macromolecular Complexes at the Goethe-University Frankfurt), Innovative Medicines Initiative Joint Undertaking Project Translocation (IMI-Translocation), EU Marie Curie Actions ITN, HFSP and the German-Israeli Foundation (GIF). The SM laboratory is supported by ERATO Murata Lipid Active Structure Project, Japan Science and Technology Agency, the Advanced Research for Medical Products Mining Program of the National Institute of Biomedical Innovation (NIBIO) and HFSP.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.sbi.2015.07.01

    ATP-dependent substrate transport by the ABC transporter MsbA is proton-coupled.

    Get PDF
    ATP-binding cassette transporters mediate the transbilayer movement of a vast number of substrates in or out of cells in organisms ranging from bacteria to humans. Current alternating access models for ABC exporters including the multidrug and Lipid A transporter MsbA from Escherichia coli suggest a role for nucleotide as the fundamental source of free energy. These models involve cycling between conformations with inward- and outward-facing substrate-binding sites in response to engagement and hydrolysis of ATP at the nucleotide-binding domains. Here we report that MsbA also utilizes another major energy currency in the cell by coupling substrate transport to a transmembrane electrochemical proton gradient. The dependence of ATP-dependent transport on proton coupling, and the stimulation of MsbA-ATPase by the chemical proton gradient highlight the functional integration of both forms of metabolic energy. These findings introduce ion coupling as a new parameter in the mechanism of this homodimeric ABC transporter.Himansha Singh is supported by the Cambridge Commonwealth, European and International Trust. Saroj Velamakanni was a recipient of a Cambridge Nehru Scholarship. Shen L. Wei was funded by the Cambridge Overseas Trust. This research in the Van Veen group was supported by Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/I002383/1 and BB/C004663/1, Medical Research Council (MRC) grant G0401165 and by further support from the Human Frontier Science Program (HFSP) and the British Society for Antimicrobial Chemotherapy (BSAC).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1238
    corecore