107 research outputs found

    Trans fatty acid isomers and the trans-9/trans-11 index in fat containing foods

    Get PDF
    To determine trans fatty acid (TFA) distribution of contemporary foods, especially regarding individual trans octadecenoic acids (trans C18:1), 339 German foods of six categories (semi-solid fats, deep-fried potato products, bakery products, confectioneries, instant products and butter) were analysed using two GC methods. Results showed a high variation of TFA content between and within the categories containing between 0 and 40.5% of FAME except in butter, which is a source of natural TFA. The mean TFA values were below 2.0% of FAME, however, bakery products contained 4.5% and butter fat 3.2%, respectively. In addition, the distribution of individual trans C18:1 differed. In samples containing ruminant fat (butter and various confectioneries), vaccenic acid (t11-C18:1, t11) predominated, while in foods containing industrially hydrogenated fats, elaidic acid (trans-9, t9-) and t10-C18:1 were the major trans isomers.. This was reflected by a low t9/t11 index of 0.3 and 0.5 in butter and ruminant fat containing confectioneries, respectively, whilst the highest index was observed in shortenings and deep-fried potato products at 5.2 and 6.8, respectively. In conclusion, the TFA content of foods available on the German market is generally declining, but substantial variations are present. The t9/t11 index could be used as an indicator to determine ruminant fat

    A prospective cohort study of dietary patterns of non-western migrants in the Netherlands in relation to risk factors for cardiovascular diseases: HELIUS-Dietary Patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Western countries the prevalence of cardiovascular disease (CVD) is often higher in non-Western migrants as compared to the host population. Diet is an important modifiable determinant of CVD. Increasingly, dietary patterns rather than single nutrients are the focus of research in an attempt to account for the complexity of nutrient interactions in foods. Research on dietary patterns in non-Western migrants is limited and may be hampered by a lack of validated instruments that can be used to assess the habitual diet of non-western migrants in large scale epidemiological studies. The ultimate aims of this study are to (1) understand whether differences in dietary patterns explain differences in CVD risk between ethnic groups, by developing and validating ethnic-specific Food Frequency Questionnaires (FFQs), and (2) to investigate the determinants of these dietary patterns. This paper outlines the design and methods used in the HELIUS-Dietary Patterns study and describes a systematic approach to overcome difficulties in the assessment and analysis of dietary intake data in ethnically diverse populations.</p> <p>Methods/Design</p> <p>The HELIUS-Dietary Patterns study is embedded in the HELIUS study, a Dutch multi-ethnic cohort study. After developing ethnic-specific FFQs, we will gather data on the habitual intake of 5000 participants (18-70 years old) of ethnic Dutch, Surinamese of African and of South Asian origin, Turkish or Moroccan origin. Dietary patterns will be derived using factor analysis, but we will also evaluate diet quality using hypothesis-driven approaches. The relation between dietary patterns and CVD risk factors will be analysed using multiple linear regression analysis. Potential underlying determinants of dietary patterns like migration history, acculturation, socio-economic factors and lifestyle, will be considered.</p> <p>Discussion</p> <p>This study will allow us to investigate the contribution of the dietary patterns on CVD risk factors in a multi-ethnic population. Inclusion of five ethnic groups residing in one setting makes this study highly innovative as confounding by local environment characteristics is limited. Heterogeneity in the study population will provide variance in dietary patterns which is a great advantage when studying the link between diet and disease.</p

    Soy isoflavones, estrogen therapy, and breast cancer risk: analysis and commentary

    Get PDF
    There has been considerable investigation of the potential for soyfoods to reduce risk of cancer, and in particular cancer of the breast. Most interest in this relationship is because soyfoods are essentially a unique dietary source of isoflavones, compounds which bind to estrogen receptors and exhibit weak estrogen-like effects under certain experimental conditions. In recent years the relationship between soyfoods and breast cancer has become controversial because of concerns – based mostly on in vitro and rodent data – that isoflavones may stimulate the growth of existing estrogen-sensitive breast tumors. This controversy carries considerable public health significance because of the increasing popularity of soyfoods and the commercial availability of isoflavone supplements. In this analysis and commentary we attempt to outline current concerns regarding the estrogen-like effects of isoflavones in the breast focusing primarily on the clinical trial data and place these concerns in the context of recent evidence regarding estrogen therapy use in postmenopausal women. Overall, there is little clinical evidence to suggest that isoflavones will increase breast cancer risk in healthy women or worsen the prognosis of breast cancer patients. Although relatively limited research has been conducted, and the clinical trials often involved small numbers of subjects, there is no evidence that isoflavone intake increases breast tissue density in pre- or postmenopausal women or increases breast cell proliferation in postmenopausal women with or without a history of breast cancer. The epidemiologic data are generally consistent with the clinical data, showing no indication of increased risk. Furthermore, these clinical and epidemiologic data are consistent with what appears to be a low overall breast cancer risk associated with pharmacologic unopposed estrogen exposure in postmenopausal women. While more research is required to definitively allay concerns, the existing data should provide some degree of assurance that isoflavone exposure at levels consistent with historical Asian soyfood intake does not result in adverse stimulatory effects on breast tissue

    Food habits in athletes

    Get PDF
    Contains fulltext : mmubn000001_143692135.pdf (publisher's version ) (Open Access)Promotores : W. Saris en R. Binkhorst107 p

    Wie eet wat, en wanneer? bij duursport, teamsport en (snel)krachtsport

    Full text link
    De krachtexplosie waarmee de honderd meter in net tien seconden wordt afgelegd, vergt niet veel meer dan 35 kilocalorieën. Vergeleken met zwoegende etapperenners (1750 kcal per uur als het heel hard gaat), Kanaalzwemmers (1500 kcal) en langlaufers (1600 kcal) schijnt zo'n licht sprintertje maar heel weinig energie te gebruiken. Of toch niet? Om tot die prestatie te komen is heel wat training nodig. En ook dat kost calorieën. Feit is wel dat intensiteit en duur van allerlei sporten aanzienlijk verschillen. Die verschillen zijn er zelfs binnen één sport: de doelverdediger levert een ándere, minder calorieën vretende, prestatie dan een alsmaar sprintjes trekkende spits. En dat heeft nogal wal consequenties voor de voeding
    corecore