699 research outputs found

    Relaxed commutant lifting and Nehari interpolation

    Get PDF
    Kaashoek, M.A. [Promotor]Ran, A.C.M. [Promotor

    State space formulas for stable rational matrix solutions of a Leech problem

    Full text link
    Given stable rational matrix functions GG and KK, a procedure is presented to compute a stable rational matrix solution XX to the Leech problem associated with GG and KK, that is, G(z)X(z)=K(z)G(z)X(z)=K(z) and supz1X(z)1\sup_{|z|\leq 1}\|X(z)\|\leq 1. The solution is given in the form of a state space realization, where the matrices involved in this realization are computed from state space realizations of the data functions GG and KK.Comment: 25 page

    All solutions to the relaxed commutant lifting problem

    Full text link
    A new description is given of all solutions to the relaxed commutant lifting problem. The method of proof is also different from earlier ones, and uses only an operator-valued version of a classical lemma on harmonic majorants.Comment: 15 page

    State space formulas for a suboptimal rational Leech problem II: Parametrization of all solutions

    Full text link
    For the strictly positive case (the suboptimal case), given stable rational matrix functions GG and KK, the set of all HH^\infty solutions XX to the Leech problem associated with GG and KK, that is, G(z)X(z)=K(z)G(z)X(z)=K(z) and supz1X(z)1\sup_{|z|\leq 1}\|X(z)\|\leq 1, is presented as the range of a linear fractional representation of which the coefficients are presented in state space form. The matrices involved in the realizations are computed from state space realizations of the data functions GG and KK. On the one hand the results are based on the commutant lifting theorem and on the other hand on stabilizing solutions of algebraic Riccati equations related to spectral factorizations.Comment: 28 page

    Equivalence of robust stabilization and robust performance via feedback

    Full text link
    One approach to robust control for linear plants with structured uncertainty as well as for linear parameter-varying (LPV) plants (where the controller has on-line access to the varying plant parameters) is through linear-fractional-transformation (LFT) models. Control issues to be addressed by controller design in this formalism include robust stability and robust performance. Here robust performance is defined as the achievement of a uniform specified L2L^{2}-gain tolerance for a disturbance-to-error map combined with robust stability. By setting the disturbance and error channels equal to zero, it is clear that any criterion for robust performance also produces a criterion for robust stability. Counter-intuitively, as a consequence of the so-called Main Loop Theorem, application of a result on robust stability to a feedback configuration with an artificial full-block uncertainty operator added in feedback connection between the error and disturbance signals produces a result on robust performance. The main result here is that this performance-to-stabilization reduction principle must be handled with care for the case of dynamic feedback compensation: casual application of this principle leads to the solution of a physically uninteresting problem, where the controller is assumed to have access to the states in the artificially-added feedback loop. Application of the principle using a known more refined dynamic-control robust stability criterion, where the user is allowed to specify controller partial-state dimensions, leads to correct robust-performance results. These latter results involve rank conditions in addition to Linear Matrix Inequality (LMI) conditions.Comment: 20 page
    corecore