2,352 research outputs found
NNLO QCD corrections to event shape variables in electron positron annihilation
Precision studies of QCD at electron-positron colliders are based on
measurements of event shapes and jet rates. To match the high experimental
accuracy, theoretical predictions to next-to-next-to-leading order (NNLO) in
QCD are needed for a reliable interpretation of the data. We report the first
calculation of NNLO corrections O(alpha_s^3) to three-jet production and
related event shapes, and discuss their phenomenological impact.Comment: Contributed to 2007 Europhysics Conference on High Energy Physics,
Manchester, England 19-25 July 200
Interactions with a photonic crystal micro-cavity using AFM in contact or tapping mode operation
In this paper we show how the evanescent field of a localized mode in a photonic crystal micro-cavity can be perturbed by a nano-sized AFM tip. Due to the high field intensities in the cavity, we can see a significant change in output power when the tip is brought into the evanescent field in either contact or tapping mode operation. We find a 4 dB modulation, when using a tip and we show that the transmittance can be tuned from 0.32 to 0.8 by varying the average tapping height
The PLATO End-to-End CCD Simulator -- Modelling space-based ultra-high precision CCD photometry for the assessment study of the PLATO Mission
The PLATO satellite mission project is a next generation ESA Cosmic Vision
satellite project dedicated to the detection of exo-planets and to
asteroseismology of their host-stars using ultra-high precision photometry. The
main goal of the PLATO mission is to provide a full statistical analysis of
exo-planetary systems around stars that are bright and close enough for
detailed follow-up studies. Many aspects concerning the design trade-off of a
space-based instrument and its performance can best be tackled through
realistic simulations of the expected observations. The complex interplay of
various noise sources in the course of the observations made such simulations
an indispensable part of the assessment study of the PLATO Payload Consortium.
We created an end-to-end CCD simulation software-tool, dubbed PLATOSim, which
simulates photometric time-series of CCD images by including realistic models
of the CCD and its electronics, the telescope optics, the stellar field, the
pointing uncertainty of the satellite (or Attitude Control System [ACS]
jitter), and all important natural noise sources. The main questions that were
addressed with this simulator were the noise properties of different
photometric algorithms, the selection of the optical design, the allowable
jitter amplitude, and the expected noise budget of light-curves as a function
of the stellar magnitude for different parameter conditions. The results of our
simulations showed that the proposed multi-telescope concept of PLATO can
fulfil the defined scientific goal of measuring more than 20000 cool dwarfs
brighter than mV =11 with a precision better than 27 ppm/h which is essential
for the study of earth-like exo-planetary systems using the transit method.Comment: 5 pages, submitted for the Proceedings of the 4th HELAS International
Conference: Seismological Challenges for Stellar Structur
Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance
We show that nano-mechanical interaction using atomic force microscopy (AFM) can be used to map out mode-patterns of an optical micro-resonator with high spatial accuracy. Furthermore we demonstrate how the Q-factor and center wavelength of such resonances can be sensitively modified by both horizontal and vertical displacement of an AFM tip consisting of either Si3N4 or Si material. With a silicon tip we are able to tune the resonance wavelength by 2.3 nm, and to set Q between values of 615 and zero, by expedient positioning of the AFM tip. We find full on/off switching for less than 100 nm vertical, and for 500 nm lateral\ud
displacement at the strongest resonance antinode locations
- …