138 research outputs found

    Superconductivity beyond the Pauli limit in high-pressure CeSb2

    Full text link
    We report the discovery of superconductivity at a pressure-induced magnetic quantum critical point in the Kondo-lattice system CeSb2, sustained up to magnetic fields that exceed the conventional Pauli limit eight-fold. Like CeRh2As2, CeSb2 is locally non-centrosymmetric around the Ce-site, but the evolution of critical fields and normal state properties as CeSb2 is tuned through the quantum critical point motivates a fundamentally different explanation for its resilience to applied field.Comment: 5 pages, 3 figure

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Testamentary Formalities in Scotland

    Get PDF
    Measurements of cross sections of inelastic and diffractive processes in proton--proton collisions at LHC energies were carried out with the ALICE detector. The fractions of diffractive processes in inelastic collisions were determined from a study of gaps in charged particle pseudorapidity distributions: for single diffraction (diffractive mass MX3M_X 3) σDD/σINEL=0.11±0.03,0.12±0.05\sigma_{\rm DD}/\sigma_{\rm INEL} = 0.11 \pm 0.03, 0.12 \pm 0.05, and 0.120.04+0.050.12^{+0.05}_{-0.04}, respectively at s=0.9,2.76\sqrt{s} = 0.9, 2.76, and 7 TeV. To measure the inelastic cross section, beam properties were determined with van der Meer scans, and, using a simulation of diffraction adjusted to data, the following values were obtained: σINEL=62.84.0+2.4(model)±1.2(lumi)\sigma_{\rm INEL} = 62.8^{+2.4}_{-4.0} (model) \pm 1.2 (lumi) mb at s=\sqrt{s} = 2.76 TeV and 73.24.6+2.0(model)±2.6(lumi)73.2^{+2.0}_{-4.6} (model) \pm 2.6 (lumi) mb at s\sqrt{s} = 7 TeV. The single- and double-diffractive cross sections were calculated combining relative rates of diffraction with inelastic cross sections. The results are compared to previous measurements at proton--antiproton and proton--proton colliders at lower energies, to measurements by other experiments at the LHC, and to theoretical models

    Multiplicity dependence of jet-like two-particle correlation structures in p–Pb collisions at NN=5.02\sqrt{NN} = 5.02 TeV

    Get PDF
    AbstractTwo-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p–Pb collisions at a nucleon–nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7<pT,assoc<pT,trig<5.0 GeV/c is examined, to include correlations induced by jets originating from low momentum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range |η|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p–Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton–parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p–Pb collisions. Further, the number scales only in the intermediate multiplicity region with the number of binary nucleon–nucleon collisions estimated with a Glauber Monte-Carlo simulation

    Multiplicity dependence of jet-like two-particle correlation structures in p–Pb collisions at NN=5.02\sqrt{NN} = 5.02 TeV

    Full text link

    ALICE Electromagnetic Calorimeter Technical Design Report

    Get PDF
    The ALICE Electromagnetic Calorimeter technical design is reported
    corecore