9 research outputs found
CD5L is a canonical component of circulatory IgM
Immunoglobulin M (IgM) is an evolutionary conserved key component of humoral immunity, and the first antibody isotype to emerge during an immune response. IgM is a large (1 MDa), multimeric protein, for which both hexameric and pentameric structures have been described, the latter additionally containing a joining (J) chain. Using a combination of single-particle mass spectrometry and mass photometry, proteomics, and immunochemical assays, we here demonstrate that circulatory (serum) IgM exclusively exists as a complex of J-chain-containing pentamers covalently bound to the small (36 kDa) protein CD5 antigen-like (CD5L, also called apoptosis inhibitor of macrophage). In sharp contrast, secretory IgM in saliva and milk is principally devoid of CD5L. Unlike IgM itself, CD5L is not produced by B cells, implying that it associates with IgM in the extracellular space. We demonstrate that CD5L integration has functional implications, i.e., it diminishes IgM binding to two of its receptors, the FcαµR and the polymeric Immunoglobulin receptor. On the other hand, binding to FcµR as well as complement activation via C1q seem unaffected by CD5L integration. Taken together, we redefine the composition of circulatory IgM as a J-chain containing pentamer, always in complex with CD5L
CD5L is a canonical component of circulatory IgM
Immunoglobulin M (IgM) is an evolutionary conserved key component of humoral immunity, and the first antibody isotype to emerge during an immune response. IgM is a large (1 MDa), multimeric protein, for which both hexameric and pentameric structures have been described, the latter additionally containing a joining (J) chain. Using a combination of single-particle mass spectrometry and mass photometry, proteomics, and immunochemical assays, we here demonstrate that circulatory (serum) IgM exclusively exists as a complex of J-chain-containing pentamers covalently bound to the small (36 kDa) protein CD5 antigen-like (CD5L, also called apoptosis inhibitor of macrophage). In sharp contrast, secretory IgM in saliva and milk is principally devoid of CD5L. Unlike IgM itself, CD5L is not produced by B cells, implying that it associates with IgM in the extracellular space. We demonstrate that CD5L integration has functional implications, i.e., it diminishes IgM binding to two of its receptors, the FcαµR and the polymeric Immunoglobulin receptor. On the other hand, binding to FcµR as well as complement activation via C1q seem unaffected by CD5L integration. Taken together, we redefine the composition of circulatory IgM as a J-chain containing pentamer, always in complex with CD5L
Analysis of the activity of alpha 1-adrenoceptor antagonists in rat aorta.
1. In this study, the effect of seven alpha 1-adrenoceptor antagonists (tamsulosin, phentolamine, prazosin, WB-4101, 5-methylurapidil, spiperone and HV723) have been examined on the contractile response to noradrenaline (NA) and phenylephrine (PE) in rat isolated aorta. 2. NA and PE, when administered using a cumulative dosing schedule, both produced concentration-dependent contraction of aortic rings. It was possible to fit the individual concentration-effect (E/[A]) curve data to the Hill equation to provide estimates of the curve midpoint location (p[A]50 = 7.74 +/- 0.10 and 7.14 +/- 0.18), midpoint slope (nH = 0.82 +/- 0.03 and 0.99 +/- 0.10) and upper asymptote (alpha = 3.2 +/- 0.3 and 3.1 +/- 0.2 g) parameters for NA and PE, respectively. However, the Hill equation provided a better fit to the E/[A] curve data obtained with another contractile agent, 5-hydroxytryptamine (5-HT) (p[A50] = 6.09 +/- 0.08, nH = 1.49 +/- 0.09, alpha = 2.6 +/- 0.3 g), as judged by calculation of the mean sum of squares of the differences between the observed and predicted values. 3. All of the antagonists investigated produced concentration-dependent inhibition of the contractile responses of the aorta to NA and PE. Although no significant effects on the upper asymptotes of the E/[A] curves of any of the antagonists tested were detected, only tamsulosin and 5-methylurapidil did not have a significant effect on the slope (nH) of the NA and PE E/[A] curves. The other antagonists produced significant steepening of the curves obtained with NA and/or PE. 4. Notwithstanding the fact that one of the basic criteria for simple competitive antagonism at a single receptor class was not always satisfied, the individual log [A]50 values estimated in the absence and presence of antagonist within each experiment were fitted to the competitive model. The Schild plot slope parameters for the antagonism of NA and PE by phentolamine and HV723 were found to be significantly less than unity. The Schild plot slope parameters for the other antagonists were not significantly different from unity. 5. In the absence of evidence to suggest that the deviations from simple competitive antagonism were due to failure to satisfy basic experimental conditions for quantitative analysis, an attempt was made to see whether the data could be accounted for by an existing two-receptor model (Furchgott, 1981). The goodness-of-fit obtained with the two-receptor model was significantly better than that obtained with the one-receptor model. Furthermore, with the exception of the data obtained with phentolamine, the pKB estimates for the two receptors were independent of whether NA or PE was used as agonist. 6. To determine which alpha 1-adrenoceptor subtypes may be associated with those defined by the two receptor model, the mean pKB estimates obtained from the two-receptor model fit were compared with affinities measured by Laz et al. (1994) for rat cloned alpha 1-adrenoceptor subtypes expressed in COS-7 cells. The sum of squared differences of the data points from the line of identity was smallest for both pKB1 and pKB2 in the case of the alpha 1a/d-adrenoceptor (now referred to as alpha 1d-adrenoceptor; Hieble et al., 1995). Therefore, the complexity exposed in this study may be due to the expression of closely-related forms of the alpha 1d-adrenoceptor. However, relatively good matches were also found between pKB1 and alpha 1c and between pKB2 and alpha 1b. Therefore, on the basis of these data, it is not possible to rule out the involvement of all three alpha 1-adrenoceptors. The conflicting reports concerning the characteristics of the alpha 1-adrenoceptor population mediating contraction of the rat aorta may, at least in part, be due to the lack of highly selective ligands and to between-assay variation in the expression of multiple alpha 1-adrenoceptors
Mid-frequency DFNA8/12 hearing loss caused by a synonymous TECTA mutation that affects an exonic splice enhancer.
Contains fulltext :
69348.pdf (publisher's version ) (Closed access)Autosomal dominant hearing loss is highly heterogeneous. Hearing impairment mainly involves the mid-frequencies (500-2000 Hz) in only a low percentage of the cases. In a Dutch family with autosomal dominant mid-frequency/flat hearing loss, genome-wide SNP analysis combined with fine mapping using microsatellite markers mapped the defect to the DFNA8/12 locus, with a maximum two-point LOD score of 3.52. All exons and intron-exon boundaries of the TECTA gene, of which mutations are causative for DFNA8/12, were sequenced. Only one heterozygous synonymous change in exon 16 (c.5331G>A; p.L1777L) was found to segregate with the hearing loss. This change was predicted to cause the loss of an exonic splice enhancer (ESE). RT-PCR using primers flanking exon 16 revealed, besides the expected PCR product from the wild-type allele, a smaller fragment only in the affected individual, representing part of an aberrant TECTA transcript lacking exon 16. The aberrant splicing is predicted to result in a deletion of 37 amino acids (p.S1758Y/G1759_N1795del) in alpha-tectorin. Subsequently, the same mutation was detected in two out of 36 individuals with a comparable phenotype. Owing to the position of the protein deletion just N-terminal of the zona pellucida (ZP) domain of alpha-tectorin, it is likely that the deletion of 37 amino acids may affect the proteolytic processing, structure and/or function of this domain, which results in a clinical phenotype comparable to that of missense mutations in the ZP domain. In addition, this is the first report of a synonymous mutation that affects an ESE and causes hereditary hearing loss