9 research outputs found

    Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil

    Get PDF
    We studied the role of biochar in improving soil fertility for maize production. The effects of biochar on the alleviation of three potential physical-chemical soil limitations for maize growth were investigated, i.e. water stress, nutrient stress and acid stress. Experiments involved soils with two dosages of biochar (0.5% and 2% w:w), as well as ones without biochar, in combination with four different dosages of NPK fertilizer, water and lime. Biochar was produced from the invasive shrubby weed Eupatorium adenophorum using flame curtain kilns. This is the first study to alleviate one by one the water stress, nutrient stress and acid stress in order to investigate the mechanisms of biochar effects on soil fertility. Biochar addition increased soil moisture, potassium (K) and plant available phosphorous (P-AL), which all showed significant positive relationship (p < 0.001) with above ground biomass of maize. However, biochar was much more effective at abundant soil watering (+ 311% biomass) than at water-starved conditions (+ 67% biomass), indicating that biochar did increase soil moisture, but that this was not the main reason for the positive biomass growth effects. Biochar addition did have a stronger effect under nutrient-stressed conditions (+ 363%) than under abundant nutrient application (+ 132%). Biochar amendment increased soil pH, but liming and pH had no effect on maize dry biomass, so acidity stress alleviation was not the mechanism of biochar effects on soil fertility. In conclusion, the alleviation of nutrient stress was the probably the main factor contributing to the increased maize biomass production upon biochar addition to this moderately acidic Inceptisol.publishedVersio

    THE DIFFERENT FACES OF BIOCHAR: CONTAMINATION RISK VERSUS REMEDIATION TOOL

    Full text link
    This article reviews the different aspects of biochar as source and sink of organic and inorganic contaminants. Biochar can contain organic contaminants such as polycyclic aromatic hydrocarbons or heavy metals. As the distribution coefficients of the biochar especially for contaminants are high, the freely dissolved concentrations are low and with that also the bioavailability. The link between biochar’s inherent contaminants and toxicity to soil meso– and macro–fauna remains unclear, with data being often contradictory and influenced by feedstock and pyrolysis conditions. The biochar’s potential to remediate contaminated soils has mainly been addressed in lab studies, but rarely in the field. This far, results have been contradicting. Many studies reported successful immobilization of contaminants but some not. In summary, the ambivalent face of the biochar with regard to contaminants prevails. In future, long term field studies are needed to properly address the sustainability of biochar in this respect. First published online: 02 Feb 201
    corecore