47 research outputs found

    Reaction of 13-Vertex Carborane μ‑1,2-(CH<sub>2</sub>)<sub>3</sub>‑1,2‑C<sub>2</sub>B<sub>11</sub>H<sub>11</sub> with Nucleophiles: Scope and Mechanism

    No full text
    13-Vertex carborane, μ-1,2-(CH<sub>2</sub>)<sub>3</sub>-1,2-C<sub>2</sub>B<sub>11</sub>H<sub>11</sub> (<b>1</b>), reacted with a series of nucleophiles (Nu) to give the cage carbon extrusion products [μ-1,2-(CH<sub>2</sub>)<sub>3</sub>­CH­(Nu)-1-CB<sub>11</sub>H<sub>10</sub>]<sup>−</sup>, [μ-1,2-(CH<sub>2</sub>)<sub>2</sub>­CH­(Nu)­CH<sub>2</sub>-1-CB<sub>11</sub>H<sub>10</sub>]<sup>−</sup>, and/or [μ-1,2-(CH<sub>2</sub>)<sub>2</sub>­CHCH-1-CB<sub>11</sub>H<sub>10</sub>]<sup>−</sup>, depending on the nature of Nu and the reaction conditions. The key intermediates for the formation of CB<sub>11</sub><sup>–</sup> anions were isolated and structurally characterized as [μ–η:η:η-7,8,10-(CH<sub>2</sub>)<sub>3</sub>­CHB­(Nu)-7-CB<sub>10</sub>H<sub>10</sub>]<sup>−</sup> (Nu = OMe, NEt<sub>2</sub>). The reaction mechanism is thus proposed, which involves the attack of Nu at the most electron-deficient cage boron, followed by H-migration to one of the cage carbons, leading to the formation of the intermediate. Nu-migration gives the products

    Reactivity of Traditional Metal–Carbon (Alkyl) versus Nontraditional Metal–Carbon (Cage) Bonds in Organo-Rare-Earth Metal Complexes [η<sup>5</sup>:σ-(C<sub>9</sub>H<sub>6</sub>)(C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>)]­Ln(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>‑<i>o</i>‑NMe<sub>2</sub>)(THF)<sub>2</sub>

    No full text
    Equimolar reaction of 1-indenyl-1,2-carborane with Ln­(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>)<sub>3</sub> in THF gave highly constrained-geometry complexes [η<sup>5</sup>:σ-(C<sub>9</sub>H<sub>6</sub>)­C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>]­Ln­(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>)­(THF)<sub>2</sub> (Ln = Y (<b>1a</b>), Gd (<b>1b</b>), Dy (<b>1c</b>)). They reacted with RNCNR or 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCS to generate the Ln–C<sub>alkyl</sub> insertion products [η<sup>5</sup>:σ-(C<sub>9</sub>H<sub>6</sub>)­C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>]­Ln­[η<sup>2</sup><i>-</i>(RN)<sub>2</sub>C­(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>)]­(THF) (R = TMS, Ln = Y (<b>2a</b>), Gd (<b>2b</b>); R = <sup><i>t</i></sup>Bu, Ln = Y (<b>3a</b>)) or [η<sup>5</sup>:σ-(C<sub>9</sub>H<sub>6</sub>)­C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>]­Dy­[η<sup>2</sup><i>-</i>(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NC­(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>)­S]­(THF)<sub>2</sub> (<b>4c</b>). Treatment of <b>2a</b> with 1 equiv of R′NCNR′ to give the Y–C<sub>cage</sub> insertion complexes [η<sup>5</sup>:σ-(C<sub>9</sub>H<sub>6</sub>)­{N­(R′)­C­(NR′)}­C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>]­Y­[η<sup>2</sup><i>-</i>{(TMS)­N}<sub>2</sub>­C­(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>)] (R′ = Cy (<b>5a</b>), <sup><i>i</i></sup>Pr (<b>6a</b>)). Similarly, unsaturated compounds Ph<sub>2</sub>CCO and Py<sub>2</sub>CO (Py = 2-pyridyl) also inserted into the Y–C<sub>cage</sub> bond in <b>2a</b> to yield [η<sup>5</sup>:σ-(C<sub>9</sub>H<sub>6</sub>)­{OC­(CPh<sub>2</sub>)}­C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>]­Y­[η<sup>2</sup><i>-</i>{(TMS)­N}<sub>2</sub>C­(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>)] (<b>7a</b>) and [η<sup>5</sup>:σ-(C<sub>9</sub>H<sub>6</sub>)­{OC­(Py)<sub>2</sub>}­C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>]­Y­[η<sup>2</sup><i>-</i>{(TMS)­N)}<sub>2</sub>­C­(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>)]­(THF) (<b>8a</b>), respectively. In sharp contrast to the earlier reports that the nontraditional metal–C<sub>cage</sub> σ bonds in metal–carboranyl complexes are generally inert toward electrophiles, the insertion of unsaturated molecules into the Y–C<sub>cage</sub> σ bond in <b>2a</b> represents the first example of this type of reactions. These results shed some light on how to activate the nontraditional metal–carbon (cage) bonds in metal–carboranyl complexes. All new complexes were characterized by spectroscopic techniques and elemental analyses. Some were further confirmed by single-crystal X-ray analyses

    Palladium-Catalyzed Regioselective Intramolecular Coupling of <i>o</i>‑Carborane with Aromatics via Direct Cage B–H Activation

    No full text
    Palladium-catalyzed intramolecular coupling of <i>o</i>-carborane with aromatics via direct cage B–H bond activation has been achieved, leading to the synthesis of a series of <i>o</i>-carborane-functionalized aromatics in high yields with excellent regioselectivity. In addition, the site selectivity can also be tuned by the substituents on cage carbon atom

    Tantallacarborane Mediated Consecutive C–C and C–N Coupling Reactions of Alkyl Isonitriles: A Facile Route to N‑Heterocycles

    No full text
    Reactions of tantallacarborane methyl complexes ([η<sup>1</sup>:η<sup>5</sup>-(Me<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>)­C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]­TaMe<sub>3</sub> (<b>1</b>) and [η<sup>1</sup>:η<sup>5</sup>-(MeOCH<sub>2</sub>CH<sub>2</sub>)­C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]­TaMe<sub>3</sub> (<b>8</b>)) with alkyl isonitriles have been studied. Complex <b>1</b> reacted with 1 equiv of RNC (R = TMSCH<sub>2</sub>, Cy, and <sup><i>i</i></sup>Pr) to afford double migratory insertion products [η<sup>1</sup>:η<sup>5</sup>-(Me<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>)­C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]­Ta­[η<sup>2</sup>-<i>C</i>,<i>N</i>-C­(Me<sub>2</sub>)­NCH<sub>2</sub>TMS]­Me (<b>2</b>) and [σ:η<sup>1</sup>:η<sup>5</sup>-{MeN­(CH<sub>2</sub>)­CH<sub>2</sub>CH<sub>2</sub>}­C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]­Ta­[N­(<sup><i>i</i></sup>Pr)­R]­Me (R = Cy (<b>3</b>), <sup><i>i</i></sup>Pr (<b>4</b>)). However, treatment of <b>1</b> or <b>8</b> with 4 equiv of alkyl isonitriles gave two fused six-membered <i>N</i>-heterocycles <b>5</b>–<b>7</b> and <b>9</b> via consecutive C–C/C-N bond-forming reactions. All new complexes were characterized by <sup>1</sup>H, <sup>13</sup>C, and <sup>11</sup>B NMR spectra as well as elemental analyses. Their structures were further confirmed by single-crystal X-ray analyses. The results show that aryl and alkyl isonitriles exhibit significantly different reactivity patterns. This work also offers a very efficient method for the synthesis of N-heterocycles

    Reaction of 13-Vertex Carborane μ‑1,2-(CH<sub>2</sub>)<sub>4</sub>‑1,2‑C<sub>2</sub>B<sub>11</sub>H<sub>11</sub> with Nucleophiles: Linkage Effect on Product Formation

    No full text
    The length of C,C′-linkage has a great influence on the reactivity of 13-vertex carboranes. Reaction of 1,2-(CH<sub>2</sub>)<sub>4</sub>-1,2-C<sub>2</sub>B<sub>11</sub>H<sub>11</sub> (<b>1a</b>) with Et<sub>2</sub>NH gave a 1:1 adduct <i>nido</i>-7-NEt<sub>2</sub>H-μ-1,3-(CH<sub>2</sub>)<sub>4</sub>-1,3-C<sub>2</sub>B<sub>11</sub>H<sub>11</sub> (<b>2</b>). Compound <b>1a</b> reacted with Me<sub>2</sub>NLi or Et<sub>2</sub>NLi to afford <i>nido</i>-[9-Nu-μ-7,8,10-(CH<sub>2</sub>)<sub>4</sub>CCH-B<sub>11</sub>H<sub>10</sub>]<sup>−</sup> (Nu = NMe<sub>2</sub>, [<b>3</b>]<sup>−</sup>; Nu = NEt<sub>2</sub>, [<b>4</b>]<sup>−</sup>). Complex [<b>4</b>]<sup>−</sup> was also obtained by deprotonation of <b>2</b>. Treatment of <b>1a</b> with MeOH/base generated <i>nido</i>-[3-OMe-μ-1,2-(CH<sub>2</sub>)<sub>4</sub>-1,2-C<sub>2</sub>B<sub>11</sub>H<sub>11</sub>]<sup>−</sup> ([<b>5</b>]<sup>−</sup>) at room temperature, which was converted to <i>nido</i>-[μ-7,8-(CH<sub>2</sub>)<sub>4</sub>CHB­(OMe)<sub>2</sub>-7-CB<sub>10</sub>H<sub>11</sub>]<sup>−</sup> ([<b>6</b>]<sup>−</sup>) upon heating in the presence of Et<sub>3</sub>N. Complex [<b>6</b>]<sup>−</sup> was oxidized by H<sub>2</sub>O<sub>2</sub> to the corresponding alcohol [μ-7,8-(CH<sub>2</sub>)<sub>4</sub>CHOH-7-CB<sub>10</sub>H<sub>11</sub>]<sup>−</sup> ([<b>7</b>]<sup>−</sup>) or hydrolyzed to the boronic acid [μ-7,8-(CH<sub>2</sub>)<sub>4</sub>CHB­(OH)<sub>2</sub>-7-CB<sub>10</sub>H<sub>11</sub>]<sup>−</sup> ([<b>8</b>]<sup>−</sup>). Reaction of <b>1a</b> with (4-MeC<sub>6</sub>H<sub>4</sub>)­SNa produced a CB<sub>11</sub><sup>–</sup> anion <i>closo</i>-[μ-1,2-(CH<sub>2</sub>)<sub>4</sub>CHS­(4-MeC<sub>6</sub>H<sub>4</sub>)-1-CB<sub>11</sub>H<sub>10</sub>]<sup>−</sup> ([<b>9</b>]<sup>−</sup>). The above complexes were fully characterized by <sup>1</sup>H, <sup>13</sup>C, and <sup>11</sup>B NMR spectroscopic data and elemental analyses. Molecular structures of <b>1</b>–[<b>7</b>]<sup>−</sup> and [<b>9</b>]<sup>−</sup> were further confirmed by single-crystal X-ray analyses

    Iridium Catalyzed Regioselective Cage Boron Alkenylation of <i>o-</i>Carboranes via Direct Cage B–H Activation

    No full text
    Iridium catalyzed alkyne hydroboration with <i>o-</i>carborane cage B–H has been achieved, leading to the formation of a series of 4-B-alkenylated-<i>o</i>-carborane derivatives in high yields with excellent regioselectivity via direct B–H bond activation. In this reaction the carboxy group is used as a traceless directing group, which is removed during a one-pot process. After the confirmation of a key intermediate, a possible mechanism is proposed, involving a tandem sequence of Ir-mediated B–H activation, alkyne insertion, protonation, and decarboxylation

    Reaction of 13-Vertex Carborane μ‑1,2-(CH<sub>2</sub>)<sub>4</sub>‑1,2‑C<sub>2</sub>B<sub>11</sub>H<sub>11</sub> with Nucleophiles: Linkage Effect on Product Formation

    No full text
    The length of C,C′-linkage has a great influence on the reactivity of 13-vertex carboranes. Reaction of 1,2-(CH<sub>2</sub>)<sub>4</sub>-1,2-C<sub>2</sub>B<sub>11</sub>H<sub>11</sub> (<b>1a</b>) with Et<sub>2</sub>NH gave a 1:1 adduct <i>nido</i>-7-NEt<sub>2</sub>H-μ-1,3-(CH<sub>2</sub>)<sub>4</sub>-1,3-C<sub>2</sub>B<sub>11</sub>H<sub>11</sub> (<b>2</b>). Compound <b>1a</b> reacted with Me<sub>2</sub>NLi or Et<sub>2</sub>NLi to afford <i>nido</i>-[9-Nu-μ-7,8,10-(CH<sub>2</sub>)<sub>4</sub>CCH-B<sub>11</sub>H<sub>10</sub>]<sup>−</sup> (Nu = NMe<sub>2</sub>, [<b>3</b>]<sup>−</sup>; Nu = NEt<sub>2</sub>, [<b>4</b>]<sup>−</sup>). Complex [<b>4</b>]<sup>−</sup> was also obtained by deprotonation of <b>2</b>. Treatment of <b>1a</b> with MeOH/base generated <i>nido</i>-[3-OMe-μ-1,2-(CH<sub>2</sub>)<sub>4</sub>-1,2-C<sub>2</sub>B<sub>11</sub>H<sub>11</sub>]<sup>−</sup> ([<b>5</b>]<sup>−</sup>) at room temperature, which was converted to <i>nido</i>-[μ-7,8-(CH<sub>2</sub>)<sub>4</sub>CHB­(OMe)<sub>2</sub>-7-CB<sub>10</sub>H<sub>11</sub>]<sup>−</sup> ([<b>6</b>]<sup>−</sup>) upon heating in the presence of Et<sub>3</sub>N. Complex [<b>6</b>]<sup>−</sup> was oxidized by H<sub>2</sub>O<sub>2</sub> to the corresponding alcohol [μ-7,8-(CH<sub>2</sub>)<sub>4</sub>CHOH-7-CB<sub>10</sub>H<sub>11</sub>]<sup>−</sup> ([<b>7</b>]<sup>−</sup>) or hydrolyzed to the boronic acid [μ-7,8-(CH<sub>2</sub>)<sub>4</sub>CHB­(OH)<sub>2</sub>-7-CB<sub>10</sub>H<sub>11</sub>]<sup>−</sup> ([<b>8</b>]<sup>−</sup>). Reaction of <b>1a</b> with (4-MeC<sub>6</sub>H<sub>4</sub>)­SNa produced a CB<sub>11</sub><sup>–</sup> anion <i>closo</i>-[μ-1,2-(CH<sub>2</sub>)<sub>4</sub>CHS­(4-MeC<sub>6</sub>H<sub>4</sub>)-1-CB<sub>11</sub>H<sub>10</sub>]<sup>−</sup> ([<b>9</b>]<sup>−</sup>). The above complexes were fully characterized by <sup>1</sup>H, <sup>13</sup>C, and <sup>11</sup>B NMR spectroscopic data and elemental analyses. Molecular structures of <b>1</b>–[<b>7</b>]<sup>−</sup> and [<b>9</b>]<sup>−</sup> were further confirmed by single-crystal X-ray analyses

    Iridium-Catalyzed Selective B(4)–H Amination of <i>o</i>‑Carboranes with Anthranils

    No full text
    We report here a catalytic selective cage B4–H amination of o-carboranes employing an Ir(III) complex as a catalyst and anthranils as aminating agents, leading to a large class of B4-aminated o-carboranes with very high yields and a broad substrate scope under mild conditions without any oxidants. In these reactions, the carboxyl group serves as a traceless directing unit to determine the site selectivity and degree of substitution

    Reaction of Carboryne with Alkylbenzenes

    No full text
    Carboryne (1,2-dehydro-<i>o</i>-carborane), in situ generated from the precursor 1-iodo-2-lithiocarborane, reacted with alkylbenzenes to give two regioisomers of the [4 + 2] cycloadducts as the major products in moderate to good yields, in which the steric factors play an important role in the regioselectivity. Minor products derived from benzylic C–H insertion reaction, annulation reaction, tandem [4 + 2] cycloaddition/homo Diels–Alder reaction, and tandem ene reaction/[2 + 2] cycloaddition were also isolated and characterized in the reaction of carboryne with toluene. The presence of AgF in the above reaction produced no notable changes in the product distributions and yields

    Reaction of [η<sup>1</sup>:η<sup>5</sup>‑(R<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>)C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]TaMe<sub>3</sub> with Isonitriles: Effects of Nitrogen Substituents on Product Formation

    No full text
    Tantallacarborane trimethyl complexes show diverse reactivity patterns toward isonitriles. Reaction of [η<sup>1</sup>:η<sup>5</sup>-(Me<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>)­C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]­TaMe<sub>3</sub> (<b>1</b>) with 1-adamantyl isonitrile (AdNC) led to the clean formation of an imido complex, [σ:η<sup>5</sup>-(MeNCH<sub>2</sub>CH<sub>2</sub>)­C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]­Ta­(NAd)­(THF) (<b>2</b>) with elimination of methane and 2-methylpropene, whereas treatment of [η<sup>1</sup>:η<sup>5</sup>-{(CH<sub>2</sub>)<sub>5</sub>NCH<sub>2</sub>CH<sub>2</sub>}­C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]­TaMe<sub>3</sub> (<b>3</b>) with AdNC under the same reaction conditions gave the cage B–H activated product {σ:η<sup>1</sup>:η<sup>5</sup>-[(CH<sub>2</sub>)<sub>5</sub>NCHCH<sub>2</sub>]­(CHMe<sub>2</sub>)­C<sub>2</sub>B<sub>9</sub>H<sub>9</sub>}­Ta­(NAd)­(THF) (<b>4</b>). An equimolar reaction of <b>1</b> with R<sup>1</sup>NC (R<sup>1</sup> = Cy, Ad), followed by 1 equiv of R<sup>2</sup>NC (R<sup>2</sup> = Xyl, Cy), afforded the imido amido complexes [η<sup>1</sup>:η<sup>5</sup>-(Me<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>)­C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]­Ta­(NR<sup>1</sup>)­[N­(CMeCMe<sub>2</sub>)­R<sup>2</sup>] (R<sup>1</sup> = Ad, R<sup>2</sup> = Cy (<b>5</b>); R<sup>1</sup> = Cy, R<sup>2</sup> = Xyl (<b>6</b>)). If 2 equiv of 2,6-dimethylphenyl isonitrile (XylNC) was used in the above reaction, the cage B–H alkylation products [η<sup>1</sup>:η<sup>5</sup>-(Me<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>)­C<sub>2</sub>B<sub>9</sub>H<sub>9</sub>]­Ta­(NR<sup>1</sup>)­[N­(Xyl)­{CHC­(Me<sub>2</sub>)­C­(Me)NXyl}] (R<sup>1</sup> = Cy (<b>7</b>), Ad (<b>8</b>)) were isolated. On the other hand, η<sup>2</sup>-iminoacyl imido complexes [η<sup>1</sup>:η<sup>5</sup>-(Me<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>)­(CHMe<sub>2</sub>)­C<sub>2</sub>B<sub>9</sub>H<sub>9</sub>]­Ta­(NXyl)­(η<sup>2</sup>-<i>C</i>,<i>N</i>-MeCNR) (R = <sup><i>i</i></sup>Pr (<b>9</b>), Cy (<b>10</b>)) were obtained from an equimolar reaction of <b>1</b> with XylNC, followed by 1 equiv of alkyl isonitriles. A double methyl migratory insertion tantallaaziridine species is proposed as a crucial intermediate for all aforementioned reactions, and follow-up steps are dependent upon N-substituents and the type and stoichiometry of isonitriles. All new complexes were characterized by spectroscopic methods and single-crystal X-ray analyses
    corecore