47 research outputs found
Reaction of 13-Vertex Carborane μ‑1,2-(CH<sub>2</sub>)<sub>3</sub>‑1,2‑C<sub>2</sub>B<sub>11</sub>H<sub>11</sub> with Nucleophiles: Scope and Mechanism
13-Vertex carborane, μ-1,2-(CH<sub>2</sub>)<sub>3</sub>-1,2-C<sub>2</sub>B<sub>11</sub>H<sub>11</sub> (<b>1</b>), reacted with
a series of nucleophiles (Nu) to give the cage carbon extrusion products
[μ-1,2-(CH<sub>2</sub>)<sub>3</sub>ÂCHÂ(Nu)-1-CB<sub>11</sub>H<sub>10</sub>]<sup>−</sup>, [μ-1,2-(CH<sub>2</sub>)<sub>2</sub>ÂCHÂ(Nu)ÂCH<sub>2</sub>-1-CB<sub>11</sub>H<sub>10</sub>]<sup>−</sup>, and/or [μ-1,2-(CH<sub>2</sub>)<sub>2</sub>ÂCHî—»CH-1-CB<sub>11</sub>H<sub>10</sub>]<sup>−</sup>, depending on the nature of Nu and the reaction conditions.
The key intermediates for the formation of CB<sub>11</sub><sup>–</sup> anions were isolated and structurally characterized as [μ–η:η:η-7,8,10-(CH<sub>2</sub>)<sub>3</sub>ÂCHBÂ(Nu)-7-CB<sub>10</sub>H<sub>10</sub>]<sup>−</sup> (Nu = OMe, NEt<sub>2</sub>). The reaction mechanism
is thus proposed, which involves the attack of Nu at the most electron-deficient
cage boron, followed by H-migration to one of the cage carbons, leading
to the formation of the intermediate. Nu-migration gives the products
Reactivity of Traditional Metal–Carbon (Alkyl) versus Nontraditional Metal–Carbon (Cage) Bonds in Organo-Rare-Earth Metal Complexes [η<sup>5</sup>:σ-(C<sub>9</sub>H<sub>6</sub>)(C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>)]ÂLn(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>‑<i>o</i>‑NMe<sub>2</sub>)(THF)<sub>2</sub>
Equimolar
reaction of 1-indenyl-1,2-carborane with LnÂ(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>)<sub>3</sub> in
THF gave highly constrained-geometry complexes [η<sup>5</sup>:σ-(C<sub>9</sub>H<sub>6</sub>)ÂC<sub>2</sub>B<sub>10</sub>H<sub>10</sub>]ÂLnÂ(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>)Â(THF)<sub>2</sub> (Ln = Y (<b>1a</b>), Gd (<b>1b</b>), Dy (<b>1c</b>)). They reacted
with RNCNR or 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCS to generate the Ln–C<sub>alkyl</sub> insertion
products [η<sup>5</sup>:σ-(C<sub>9</sub>H<sub>6</sub>)ÂC<sub>2</sub>B<sub>10</sub>H<sub>10</sub>]ÂLnÂ[η<sup>2</sup><i>-</i>(RN)<sub>2</sub>CÂ(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>)]Â(THF) (R = TMS, Ln = Y
(<b>2a</b>), Gd (<b>2b</b>); R = <sup><i>t</i></sup>Bu, Ln = Y (<b>3a</b>)) or [η<sup>5</sup>:σ-(C<sub>9</sub>H<sub>6</sub>)ÂC<sub>2</sub>B<sub>10</sub>H<sub>10</sub>]ÂDyÂ[η<sup>2</sup><i>-</i>(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ÂNCÂ(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>)ÂS]Â(THF)<sub>2</sub> (<b>4c</b>). Treatment
of <b>2a</b> with 1 equiv of R′NCNR′
to give the Y–C<sub>cage</sub> insertion complexes [η<sup>5</sup>:σ-(C<sub>9</sub>H<sub>6</sub>)Â{NÂ(R′)ÂCÂ(î—»NR′)}ÂC<sub>2</sub>B<sub>10</sub>H<sub>10</sub>]ÂYÂ[η<sup>2</sup><i>-</i>{(TMS)ÂN}<sub>2</sub>ÂCÂ(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>)] (R′ = Cy
(<b>5a</b>), <sup><i>i</i></sup>Pr (<b>6a</b>)). Similarly, unsaturated compounds Ph<sub>2</sub>Cî—»Cî—»O
and Py<sub>2</sub>Cî—»O (Py = 2-pyridyl) also inserted into the
Y–C<sub>cage</sub> bond in <b>2a</b> to yield [η<sup>5</sup>:σ-(C<sub>9</sub>H<sub>6</sub>)Â{OCÂ(î—»CPh<sub>2</sub>)}ÂC<sub>2</sub>B<sub>10</sub>H<sub>10</sub>]ÂYÂ[η<sup>2</sup><i>-</i>{(TMS)ÂN}<sub>2</sub>CÂ(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>)] (<b>7a</b>) and [η<sup>5</sup>:σ-(C<sub>9</sub>H<sub>6</sub>)Â{OCÂ(Py)<sub>2</sub>}ÂC<sub>2</sub>B<sub>10</sub>H<sub>10</sub>]ÂYÂ[η<sup>2</sup><i>-</i>{(TMS)ÂN)}<sub>2</sub>ÂCÂ(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-<i>o</i>-NMe<sub>2</sub>)]Â(THF) (<b>8a</b>), respectively. In sharp
contrast to the earlier reports that the
nontraditional metal–C<sub>cage</sub> σ bonds in metal–carboranyl
complexes are generally inert toward electrophiles, the insertion
of unsaturated molecules into the Y–C<sub>cage</sub> σ
bond in <b>2a</b> represents the first example of this type
of reactions. These results shed some light on how to activate the
nontraditional metal–carbon (cage) bonds in metal–carboranyl
complexes. All new complexes were characterized by spectroscopic techniques
and elemental analyses. Some were further confirmed by single-crystal
X-ray analyses
Palladium-Catalyzed Regioselective Intramolecular Coupling of <i>o</i>‑Carborane with Aromatics via Direct Cage B–H Activation
Palladium-catalyzed
intramolecular coupling of <i>o</i>-carborane with aromatics
via direct cage B–H bond activation
has been achieved, leading to the synthesis of a series of <i>o</i>-carborane-functionalized aromatics in high yields with
excellent regioselectivity. In addition, the site selectivity can
also be tuned by the substituents on cage carbon atom
Tantallacarborane Mediated Consecutive C–C and C–N Coupling Reactions of Alkyl Isonitriles: A Facile Route to N‑Heterocycles
Reactions
of tantallacarborane methyl complexes ([η<sup>1</sup>:η<sup>5</sup>-(Me<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>)ÂC<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]ÂTaMe<sub>3</sub> (<b>1</b>) and
[η<sup>1</sup>:η<sup>5</sup>-(MeOCH<sub>2</sub>CH<sub>2</sub>)ÂC<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]ÂTaMe<sub>3</sub> (<b>8</b>)) with alkyl isonitriles have been studied.
Complex <b>1</b> reacted with 1 equiv of RNC (R = TMSCH<sub>2</sub>, Cy, and <sup><i>i</i></sup>Pr) to afford double
migratory insertion products [η<sup>1</sup>:η<sup>5</sup>-(Me<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>)ÂC<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]ÂTaÂ[η<sup>2</sup>-<i>C</i>,<i>N</i>-CÂ(Me<sub>2</sub>)ÂNCH<sub>2</sub>TMS]ÂMe (<b>2</b>) and [σ:η<sup>1</sup>:η<sup>5</sup>-{MeNÂ(CH<sub>2</sub>)ÂCH<sub>2</sub>CH<sub>2</sub>}ÂC<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]ÂTaÂ[NÂ(<sup><i>i</i></sup>Pr)ÂR]ÂMe (R = Cy (<b>3</b>), <sup><i>i</i></sup>Pr (<b>4</b>)). However,
treatment of <b>1</b> or <b>8</b> with 4 equiv of alkyl
isonitriles gave two fused six-membered <i>N</i>-heterocycles <b>5</b>–<b>7</b> and <b>9</b> via consecutive
C–C/C-N bond-forming reactions. All new complexes were characterized
by <sup>1</sup>H, <sup>13</sup>C, and <sup>11</sup>B NMR spectra as
well as elemental analyses. Their structures were further confirmed
by single-crystal X-ray analyses. The results show that aryl and alkyl
isonitriles exhibit significantly different reactivity patterns. This
work also offers a very efficient method for the synthesis of N-heterocycles
Reaction of 13-Vertex Carborane μ‑1,2-(CH<sub>2</sub>)<sub>4</sub>‑1,2‑C<sub>2</sub>B<sub>11</sub>H<sub>11</sub> with Nucleophiles: Linkage Effect on Product Formation
The
length of C,C′-linkage has a great influence on the reactivity
of 13-vertex carboranes. Reaction of 1,2-(CH<sub>2</sub>)<sub>4</sub>-1,2-C<sub>2</sub>B<sub>11</sub>H<sub>11</sub> (<b>1a</b>)
with Et<sub>2</sub>NH gave a 1:1 adduct <i>nido</i>-7-NEt<sub>2</sub>H-μ-1,3-(CH<sub>2</sub>)<sub>4</sub>-1,3-C<sub>2</sub>B<sub>11</sub>H<sub>11</sub> (<b>2</b>). Compound <b>1a</b> reacted with Me<sub>2</sub>NLi or Et<sub>2</sub>NLi to afford <i>nido</i>-[9-Nu-μ-7,8,10-(CH<sub>2</sub>)<sub>4</sub>CCH-B<sub>11</sub>H<sub>10</sub>]<sup>−</sup> (Nu = NMe<sub>2</sub>,
[<b>3</b>]<sup>−</sup>; Nu = NEt<sub>2</sub>, [<b>4</b>]<sup>−</sup>). Complex [<b>4</b>]<sup>−</sup> was also obtained by deprotonation of <b>2</b>. Treatment
of <b>1a</b> with MeOH/base generated <i>nido</i>-[3-OMe-μ-1,2-(CH<sub>2</sub>)<sub>4</sub>-1,2-C<sub>2</sub>B<sub>11</sub>H<sub>11</sub>]<sup>−</sup> ([<b>5</b>]<sup>−</sup>) at room
temperature, which was converted to <i>nido</i>-[μ-7,8-(CH<sub>2</sub>)<sub>4</sub>CHBÂ(OMe)<sub>2</sub>-7-CB<sub>10</sub>H<sub>11</sub>]<sup>−</sup> ([<b>6</b>]<sup>−</sup>) upon heating
in the presence of Et<sub>3</sub>N. Complex [<b>6</b>]<sup>−</sup> was oxidized by H<sub>2</sub>O<sub>2</sub> to the corresponding
alcohol [μ-7,8-(CH<sub>2</sub>)<sub>4</sub>CHOH-7-CB<sub>10</sub>H<sub>11</sub>]<sup>−</sup> ([<b>7</b>]<sup>−</sup>) or hydrolyzed to the boronic acid [μ-7,8-(CH<sub>2</sub>)<sub>4</sub>CHBÂ(OH)<sub>2</sub>-7-CB<sub>10</sub>H<sub>11</sub>]<sup>−</sup> ([<b>8</b>]<sup>−</sup>). Reaction of <b>1a</b> with (4-MeC<sub>6</sub>H<sub>4</sub>)ÂSNa produced a CB<sub>11</sub><sup>–</sup> anion <i>closo</i>-[μ-1,2-(CH<sub>2</sub>)<sub>4</sub>CHSÂ(4-MeC<sub>6</sub>H<sub>4</sub>)-1-CB<sub>11</sub>H<sub>10</sub>]<sup>−</sup> ([<b>9</b>]<sup>−</sup>). The above complexes were fully characterized by <sup>1</sup>H, <sup>13</sup>C, and <sup>11</sup>B NMR spectroscopic data
and elemental analyses. Molecular structures of <b>1</b>–[<b>7</b>]<sup>−</sup> and [<b>9</b>]<sup>−</sup> were further confirmed by single-crystal X-ray analyses
Iridium Catalyzed Regioselective Cage Boron Alkenylation of <i>o-</i>Carboranes via Direct Cage B–H Activation
Iridium
catalyzed alkyne hydroboration with <i>o-</i>carborane cage
B–H has been achieved, leading to the formation
of a series of 4-B-alkenylated-<i>o</i>-carborane derivatives
in high yields with excellent regioselectivity via direct B–H
bond activation. In this reaction the carboxy group is used as a traceless
directing group, which is removed during a one-pot process. After
the confirmation of a key intermediate, a possible mechanism is proposed,
involving a tandem sequence of Ir-mediated B–H activation,
alkyne insertion, protonation, and decarboxylation
Reaction of 13-Vertex Carborane μ‑1,2-(CH<sub>2</sub>)<sub>4</sub>‑1,2‑C<sub>2</sub>B<sub>11</sub>H<sub>11</sub> with Nucleophiles: Linkage Effect on Product Formation
The
length of C,C′-linkage has a great influence on the reactivity
of 13-vertex carboranes. Reaction of 1,2-(CH<sub>2</sub>)<sub>4</sub>-1,2-C<sub>2</sub>B<sub>11</sub>H<sub>11</sub> (<b>1a</b>)
with Et<sub>2</sub>NH gave a 1:1 adduct <i>nido</i>-7-NEt<sub>2</sub>H-μ-1,3-(CH<sub>2</sub>)<sub>4</sub>-1,3-C<sub>2</sub>B<sub>11</sub>H<sub>11</sub> (<b>2</b>). Compound <b>1a</b> reacted with Me<sub>2</sub>NLi or Et<sub>2</sub>NLi to afford <i>nido</i>-[9-Nu-μ-7,8,10-(CH<sub>2</sub>)<sub>4</sub>CCH-B<sub>11</sub>H<sub>10</sub>]<sup>−</sup> (Nu = NMe<sub>2</sub>,
[<b>3</b>]<sup>−</sup>; Nu = NEt<sub>2</sub>, [<b>4</b>]<sup>−</sup>). Complex [<b>4</b>]<sup>−</sup> was also obtained by deprotonation of <b>2</b>. Treatment
of <b>1a</b> with MeOH/base generated <i>nido</i>-[3-OMe-μ-1,2-(CH<sub>2</sub>)<sub>4</sub>-1,2-C<sub>2</sub>B<sub>11</sub>H<sub>11</sub>]<sup>−</sup> ([<b>5</b>]<sup>−</sup>) at room
temperature, which was converted to <i>nido</i>-[μ-7,8-(CH<sub>2</sub>)<sub>4</sub>CHBÂ(OMe)<sub>2</sub>-7-CB<sub>10</sub>H<sub>11</sub>]<sup>−</sup> ([<b>6</b>]<sup>−</sup>) upon heating
in the presence of Et<sub>3</sub>N. Complex [<b>6</b>]<sup>−</sup> was oxidized by H<sub>2</sub>O<sub>2</sub> to the corresponding
alcohol [μ-7,8-(CH<sub>2</sub>)<sub>4</sub>CHOH-7-CB<sub>10</sub>H<sub>11</sub>]<sup>−</sup> ([<b>7</b>]<sup>−</sup>) or hydrolyzed to the boronic acid [μ-7,8-(CH<sub>2</sub>)<sub>4</sub>CHBÂ(OH)<sub>2</sub>-7-CB<sub>10</sub>H<sub>11</sub>]<sup>−</sup> ([<b>8</b>]<sup>−</sup>). Reaction of <b>1a</b> with (4-MeC<sub>6</sub>H<sub>4</sub>)ÂSNa produced a CB<sub>11</sub><sup>–</sup> anion <i>closo</i>-[μ-1,2-(CH<sub>2</sub>)<sub>4</sub>CHSÂ(4-MeC<sub>6</sub>H<sub>4</sub>)-1-CB<sub>11</sub>H<sub>10</sub>]<sup>−</sup> ([<b>9</b>]<sup>−</sup>). The above complexes were fully characterized by <sup>1</sup>H, <sup>13</sup>C, and <sup>11</sup>B NMR spectroscopic data
and elemental analyses. Molecular structures of <b>1</b>–[<b>7</b>]<sup>−</sup> and [<b>9</b>]<sup>−</sup> were further confirmed by single-crystal X-ray analyses
Iridium-Catalyzed Selective B(4)–H Amination of <i>o</i>‑Carboranes with Anthranils
We report here a catalytic selective cage B4–H
amination
of o-carboranes employing an Ir(III) complex as a
catalyst and anthranils as aminating agents, leading to a large class
of B4-aminated o-carboranes with very high yields
and a broad substrate scope under mild conditions without any oxidants.
In these reactions, the carboxyl group serves as a traceless directing
unit to determine the site selectivity and degree of substitution
Reaction of Carboryne with Alkylbenzenes
Carboryne (1,2-dehydro-<i>o</i>-carborane),
in situ generated from the precursor 1-iodo-2-lithiocarborane, reacted
with alkylbenzenes to give two regioisomers of the [4 + 2] cycloadducts
as the major products in moderate to good yields, in which the steric
factors play an important role in the regioselectivity. Minor products
derived from benzylic C–H insertion reaction, annulation reaction,
tandem [4 + 2] cycloaddition/homo Diels–Alder reaction, and
tandem ene reaction/[2 + 2] cycloaddition were also isolated and characterized
in the reaction of carboryne with toluene. The presence of AgF in
the above reaction produced no notable changes in the product distributions
and yields
Reaction of [η<sup>1</sup>:η<sup>5</sup>‑(R<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>)C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]TaMe<sub>3</sub> with Isonitriles: Effects of Nitrogen Substituents on Product Formation
Tantallacarborane
trimethyl complexes show diverse reactivity patterns toward isonitriles.
Reaction of [η<sup>1</sup>:η<sup>5</sup>-(Me<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>)ÂC<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]ÂTaMe<sub>3</sub> (<b>1</b>) with 1-adamantyl
isonitrile (AdNC) led to the clean formation of an imido complex,
[σ:η<sup>5</sup>-(MeNCH<sub>2</sub>CH<sub>2</sub>)ÂC<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]ÂTaÂ(î—»NAd)Â(THF) (<b>2</b>) with elimination of methane and 2-methylpropene, whereas
treatment of [η<sup>1</sup>:η<sup>5</sup>-{(CH<sub>2</sub>)<sub>5</sub>NCH<sub>2</sub>CH<sub>2</sub>}ÂC<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]ÂTaMe<sub>3</sub> (<b>3</b>) with
AdNC under the same reaction conditions gave the cage B–H activated
product {σ:η<sup>1</sup>:η<sup>5</sup>-[(CH<sub>2</sub>)<sub>5</sub>NCHCH<sub>2</sub>]Â(CHMe<sub>2</sub>)ÂC<sub>2</sub>B<sub>9</sub>H<sub>9</sub>}ÂTaÂ(î—»NAd)Â(THF) (<b>4</b>). An equimolar reaction of <b>1</b> with R<sup>1</sup>NC (R<sup>1</sup> = Cy, Ad), followed by 1 equiv of R<sup>2</sup>NC (R<sup>2</sup> = Xyl, Cy), afforded the imido amido complexes
[η<sup>1</sup>:η<sup>5</sup>-(Me<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>)ÂC<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]ÂTaÂ(î—»NR<sup>1</sup>)Â[NÂ(CMeî—»CMe<sub>2</sub>)ÂR<sup>2</sup>] (R<sup>1</sup> = Ad, R<sup>2</sup> = Cy (<b>5</b>); R<sup>1</sup> =
Cy, R<sup>2</sup> = Xyl (<b>6</b>)). If 2 equiv of 2,6-dimethylphenyl
isonitrile (XylNC) was used in the above reaction, the cage B–H
alkylation products [η<sup>1</sup>:η<sup>5</sup>-(Me<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>)ÂC<sub>2</sub>B<sub>9</sub>H<sub>9</sub>]ÂTaÂ(î—»NR<sup>1</sup>)Â[NÂ(Xyl)Â{CHCÂ(Me<sub>2</sub>)ÂCÂ(Me)î—»NXyl}] (R<sup>1</sup> = Cy (<b>7</b>), Ad (<b>8</b>)) were isolated. On the
other hand, η<sup>2</sup>-iminoacyl imido complexes [η<sup>1</sup>:η<sup>5</sup>-(Me<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>)Â(CHMe<sub>2</sub>)ÂC<sub>2</sub>B<sub>9</sub>H<sub>9</sub>]ÂTaÂ(î—»NXyl)Â(η<sup>2</sup>-<i>C</i>,<i>N</i>-MeCî—»NR) (R = <sup><i>i</i></sup>Pr (<b>9</b>), Cy (<b>10</b>)) were obtained from an
equimolar reaction of <b>1</b> with XylNC, followed by 1 equiv
of alkyl isonitriles. A double methyl migratory insertion tantallaaziridine
species is proposed as a crucial intermediate for all aforementioned
reactions, and follow-up steps are dependent upon N-substituents and
the type and stoichiometry of isonitriles. All new complexes were
characterized by spectroscopic methods and single-crystal X-ray analyses