6 research outputs found

    ‘Proactive’ use of cue-context congruence for building reinforcement learning’s reward function

    Full text link
    Background: Reinforcement learning is a fundamental form of learning that may be formalized using the Bellman equation. Accordingly an agent determines the state value as the sum of immediate reward and of the discounted value of future states. Thus the value of state is determined by agent related attributes (action set, policy, discount factor) and the agent’s knowledge of the environment embodied by the reward function and hidden environmental factors given by the transition probability. The central objective of reinforcement learning is to solve these two functions outside the agent’s control either using, or not using a model.Results: In the present paper, using the proactive model of reinforcement learning we offer insight on how the brain creates simplified representations of the environment, and how these representations are organized to support the identification of relevant stimuli and action. Furthermore, we identify neurobiological correlates of our model by suggesting that the reward and policy functions, attributes of the Bellman equitation, are built by the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), respectively. Conclusions: Based on this we propose that the OFC assesses cue-context congruence to activate the most context frame. Furthermore given the bidirectional neuroanatomical link between the OFC and model-free structures, we suggest that model-based input is incorporated into the reward prediction error (RPE) signal, and conversely RPE signal may be used to update the reward-related information of context frames and the policy underlying action selection in the OFC and ACC, respectively. Furthermore clinical implications for cognitive behavioral interventions are discussed

    Altered irisin/BDNF axis parallels excessive daytime sleepiness in obstructive sleep apnea patients

    Full text link
    Study objectives: Obstructive sleep apnea hypopnea syndrome (OSAHS) is a sleep-related breathing disorder, characterized by excessive daytime sleepiness (EDS), paralleled by intermittent collapse of the upper airway. EDS may be the symptom of OSAHS per se but may also be due to the alteration of central circadian regulation. Irisin is a putative myokine and has been shown to induce BDNF expression in several sites of the brain. BDNF is a key factor regulating photic entrainment and consequent circadian alignment and adaptation to the environment. Therefore, we hypothesized that EDS accompanying OSAHS is reflected by alteration of irisin/BDNF axis. Methods: Case history, routine laboratory parameters, serum irisin and BDNF levels, polysomnographic measures and Epworth Sleepiness Scale questionnaire (ESS) were performed in a cohort of OSAHS patients (n=69). Simple and then multiple linear regression was used to evaluate data. Results: We found that EDS reflected by the ESS is associated with higher serum irisin and BDNF levels; β: 1.53; CI: 0.35, 6.15; p=0.012 and β: 0.014; CI: 0.0.005, 0.023; p=0.02, respectively. Furthermore, influence of irisin and BDNF was significant even if the model accounted for their interaction (p=0.006 for the terms serum irisin, serum BDNF and their interaction). Furthermore, a concentration-dependent effect of both serum irisin and BDNF was evidenced with respect to their influence on the ESS. Conclusions: These results suggest that the irisin-BDNF axis influences subjective daytime sleepiness in OSAS patients reflected by the ESS. These results further imply the possible disruption of the circadian regulation in OSAHS. Future interventional studies are needed to confirm this observation
    corecore