420 research outputs found

    Optical properties of arrays of quantum dots with internal disorder

    Full text link
    Optical properties of large arrays of isolated quantum dots are discussed in order to interpret the existent photoluminescence data. The presented theory explains the large observed shift between the lowest emission and absorption energies as the average distance between the ground and first excited states of the dots. The lineshape of the spectra is calculated for the case when the fluctuations of the energy levels in quantum dots are due to the alloy composition fluctuations. The calculated lineshape is in good agreement with the experimental data. The influence of fluctuations of the shape of quantum dots on the photoluminescence spectra is also discussed.Comment: 7 pages (twocolumn) LATEX, 6 Postscript figure

    Quantum orientational melting of mesoscopic clusters

    Full text link
    By path integral Monte Carlo simulations we study the phase diagram of two - dimensional mesoscopic clusters formed by electrons in a semiconductor quantum dot or by indirect magnetoexcitons in double quantum dots. At zero (or sufficiently small) temperature, as quantum fluctuations of particles increase, two types of quantum disordering phenomena take place: first, at small values of quantum de Boer parameter q < 0.01 one can observe a transition from a completely ordered state to that in which different shells of the cluster, being internally ordered, are orientationally disordered relative to each other. At much greater strengths of quantum fluctuations, at q=0.1, the transition to a disordered (superfluid for the boson system) state takes place.Comment: 4 pages, 6 Postscript figure

    Massive creation of entangled exciton states in semiconductor quantum dots

    Full text link
    An intense laser pulse propagating in a medium of inhomogeneously broadened quantum dots massively creates entangled exciton states. After passage of the pulse all single-exciton states remain unpopulated (self-induced transparency) whereas biexciton coherence (exciton entanglement) is generated through two-photon transitions. We propose several experimental techniques for the observation of such unexpected behavior

    Recent advances in exciton based quantum information processing in quantum dot nanostructures

    Get PDF
    Recent experimental developments in the field of semiconductor quantum dot spectroscopy will be discussed. First we report about single quantum dot exciton two-level systems and their coherent properties in terms of single qubit manipulations. In the second part we report on coherent quantum coupling in a prototype "two-qubit" system consisting of a vertically stacked pair of quantum dots. The interaction can be tuned in such quantum dot molecule devices using an applied voltage as external parameter.Comment: 37 pages, 15 figures, submitted to New Journal of Physics, focus issue on Solid State Quantum Information, added reference

    Multiband theory of multi-exciton complexes in self-assembled quantum dots

    Full text link
    We report on a multiband microscopic theory of many-exciton complexes in self-assembled quantum dots. The single particle states are obtained by three methods: single-band effective-mass approximation, the multiband kpk\cdot p method, and the tight-binding method. The electronic structure calculations are coupled with strain calculations via Bir-Pikus Hamiltonian. The many-body wave functions of NN electrons and NN valence holes are expanded in the basis of Slater determinants. The Coulomb matrix elements are evaluated using statically screened interaction for the three different sets of single particle states and the correlated NN-exciton states are obtained by the configuration interaction method. The theory is applied to the excitonic recombination spectrum in InAs/GaAs self-assembled quantum dots. The results of the single-band effective-mass approximation are successfully compared with those obtained by using the of kpk\cdot p and tight-binding methods.Comment: 10 pages, 8 figure

    Experimental realization of the one qubit Deutsch-Jozsa algorithm in a quantum dot

    Full text link
    We perform quantum interference experiments on a single self-assembled semiconductor quantum dot. The presence or absence of a single exciton in the dot provides a qubit that we control with femtosecond time resolution. We combine a set of quantum operations to realize the single-qubit Deutsch-Jozsa algorithm. The results show the feasibility of single qubit quantum logic in a semiconductor quantum dot using ultrafast optical control.Comment: REVTex4, 4 pages, 3 figures. Now includes more details about the dephasing in the quantum dots. The introduction has been reworded for clarity. Minor readability fixe

    Resonant nature of phonon-induced damping of Rabi oscillations in quantum dots

    Full text link
    Optically controlled coherent dynamics of charge (excitonic) degrees of freedom in a semiconductor quantum dot under the influence of lattice dynamics (phonons) is discussed theoretically. We show that the dynamics of the lattice response in the strongly non-linear regime is governed by a semiclassical resonance between the phonon modes and the optically driven dynamics. We stress on the importance of the stability of intermediate states for the truly coherent control.Comment: 4 pages, 2 figures; final version; moderate changes, new titl

    Tunable Indistinguishable Photons From Remote Quantum Dots

    Full text link
    Single semiconductor quantum dots have been widely studied within devices that can apply an electric field. In the most common system, the low energy offset between the InGaAs quantum dot and the surrounding GaAs material limits the magnitude of field that can be applied to tens of kVcm^-1, before carriers tunnel out of the dot. The Stark shift experienced by the emission line is typically 1 meV. We report that by embedding the quantum dots in a quantum well heterostructure the vertical field that can be applied is increased by over an order of magnitude whilst preserving the narrow linewidths, high internal quantum efficiencies and familiar emission spectra. Individual dots can then be continuously tuned to the same energy allowing for two-photon interference between remote, independent, quantum dots

    Few-Particle Effects in Semiconductor Quantum Dots: Observation of Multi-Charged-Excitons

    Full text link
    We investigate experimentally and theoretically few-particle effects in the optical spectra of single quantum dots (QDs). Photo-depletion of the QD together with the slow hopping transport of impurity-bound electrons back to the QD are employed to efficiently control the number of electrons present in the QD. By investigating structurally identical QDs, we show that the spectral evolutions observed can be attributed to intrinsic, multi-particle-related effects, as opposed to extrinsic QD-impurity environment-related interactions. From our theoretical calculations we identify the distinct transitions related to excitons and excitons charged with up to five additional electrons, as well as neutral and charged biexcitons.Comment: 4 pages, 4 figures, revtex. Accepted for publication in Physical Review Letter
    corecore