459 research outputs found
On the Effects of Battery Imperfections in an Energy Harvesting Device
Energy Harvesting allows the devices in a Wireless Sensor Network to recharge
their batteries through environmental energy sources. While in the literature
the main focus is on devices with ideal batteries, in reality several
inefficiencies have to be considered to correctly design the operating regimes
of an Energy Harvesting Device (EHD). In this work we describe how the
throughput optimization problem changes under \emph{real battery} constraints
in an EHD. In particular, we consider imperfect knowledge of the state of
charge of the battery and storage inefficiencies, \emph{i.e.}, part of the
harvested energy is wasted in the battery recharging process. We formulate the
problem as a Markov Decision Process, basing our model on some realistic
observations about transmission, consumption and harvesting power. We find the
performance upper bound with a real battery and numerically discuss the novelty
introduced by the real battery effects. We show that using the \emph{old}
policies obtained without considering the real battery effects is strongly
sub-optimal and may even result in zero throughput.Comment: In Proc. IEEE International Conference on Computing, Networking and
Communications, pp. 942-948, Feb. 201
A Bayesian Approach to Sparse plus Low rank Network Identification
We consider the problem of modeling multivariate time series with
parsimonious dynamical models which can be represented as sparse dynamic
Bayesian networks with few latent nodes. This structure translates into a
sparse plus low rank model. In this paper, we propose a Gaussian regression
approach to identify such a model
Energy Harvesting Communication System with SOC-Dependent Energy Storage Losses
The popularity of Energy Harvesting Devices (EHDs) has grown in the past few
years, thanks to their capability of prolonging the network lifetime. In
reality, EHDs are affected by several inefficiencies, e.g., energy leakage,
battery degradation or storage losses. In this work we consider an energy
harvesting transmitter with storage inefficiencies. In particular, we assume
that when new energy has to be stored in the battery, part of this is wasted
and the losses depend upon the current state of charge of the device. This is a
practical realistic assumption, e.g., for a capacitor, that changes the
structure of the optimal transmission policy. We analyze the throughput
maximization problem with a dynamic programming approach and prove that, given
the battery status and the channel gain, the optimal transmission policy is
deterministic. We derive numerical results for the energy losses in a capacitor
and show the presence of a \emph{loop effect} that degrades the system
performance if the optimal policy is not considered.Comment: In Proc. IEEE Twelfth Int. Symposium on Wireless Communication
Systems (ISWCS), pp. 406-410, Aug. 201
The Harmonic Analysis of Kernel Functions
Kernel-based methods have been recently introduced for linear system
identification as an alternative to parametric prediction error methods.
Adopting the Bayesian perspective, the impulse response is modeled as a
non-stationary Gaussian process with zero mean and with a certain kernel (i.e.
covariance) function. Choosing the kernel is one of the most challenging and
important issues. In the present paper we introduce the harmonic analysis of
this non-stationary process, and argue that this is an important tool which
helps in designing such kernel. Furthermore, this analysis suggests also an
effective way to approximate the kernel, which allows to reduce the
computational burden of the identification procedure
Joint Transmission and Energy Transfer Policies for Energy Harvesting Devices with Finite Batteries
One of the main concerns in traditional Wireless Sensor Networks (WSNs) is
energy efficiency. In this work, we analyze two techniques that can extend
network lifetime. The first is Ambient \emph{Energy Harvesting} (EH), i.e., the
capability of the devices to gather energy from the environment, whereas the
second is Wireless \emph{Energy Transfer} (ET), that can be used to exchange
energy among devices. We study the combination of these techniques, showing
that they can be used jointly to improve the system performance. We consider a
transmitter-receiver pair, showing how the ET improvement depends upon the
statistics of the energy arrivals and the energy consumption of the devices.
With the aim of maximizing a reward function, e.g., the average transmission
rate, we find performance upper bounds with and without ET, define both online
and offline optimization problems, and present results based on realistic
energy arrivals in indoor and outdoor environments. We show that ET can
significantly improve the system performance even when a sizable fraction of
the transmitted energy is wasted and that, in some scenarios, the online
approach can obtain close to optimal performance.Comment: 16 pages, 12 figure
Achievable Secrecy Rates of an Energy Harvesting Device
The secrecy rate represents the amount of information per unit time that can
be securely sent on a communication link. In this work, we investigate the
achievable secrecy rates in an energy harvesting communication system composed
of a transmitter, a receiver and a malicious eavesdropper. In particular,
because of the energy constraints and the channel conditions, it is important
to understand when a device should transmit and to optimize how much power
should be used in order to improve security. Both full knowledge and partial
knowledge of the channel are considered under a Nakagami fading scenario. We
show that high secrecy rates can be obtained only with power and coding rate
adaptation. Moreover, we highlight the importance of optimally dividing the
transmission power in the frequency domain, and note that the optimal scheme
provides high gains in secrecy rate over the uniform power splitting case.
Analytically, we explain how to find the optimal policy and prove some of its
properties. In our numerical evaluation, we discuss how the maximum achievable
secrecy rate changes according to the various system parameters. Furthermore,
we discuss the effects of a finite battery on the system performance and note
that, in order to achieve high secrecy rates, it is not necessary to use very
large batteries.Comment: Accepted for publication in IEEE Journal on Selected Areas in
Communications (Mar. 2016
Joint Optimization of Energy Efficiency and Data Compression in TDMA-Based Medium Access Control for the IoT - Extended Version
Energy efficiency is a key requirement for the Internet of Things, as many
sensors are expected to be completely stand-alone and able to run for years
without battery replacement. Data compression aims at saving some energy by
reducing the volume of data sent over the network, but also affects the quality
of the received information. In this work, we formulate an optimization problem
to jointly design the source coding and transmission strategies for
time-varying channels and sources, with the twofold goal of extending the
network lifetime and granting low distortion levels. We propose a scalable
offline optimal policy that allocates both energy and transmission parameters
(i.e., times and powers) in a network with a dynamic Time Division Multiple
Access (TDMA)-based access scheme.Comment: 8 pages, 4 figures, revised and extended version of a paper that was
accepted for presentation at IEEE Int. Workshop on Low-Layer Implementation
and Protocol Design for IoT Applications (IoT-LINK), GLOBECOM 201
Estimating effective connectivity in linear brain network models
Contemporary neuroscience has embraced network science to study the complex
and self-organized structure of the human brain; one of the main outstanding
issues is that of inferring from measure data, chiefly functional Magnetic
Resonance Imaging (fMRI), the so-called effective connectivity in brain
networks, that is the existing interactions among neuronal populations. This
inverse problem is complicated by the fact that the BOLD (Blood Oxygenation
Level Dependent) signal measured by fMRI represent a dynamic and nonlinear
transformation (the hemodynamic response) of neuronal activity. In this paper,
we consider resting state (rs) fMRI data; building upon a linear population
model of the BOLD signal and a stochastic linear DCM model, the model
parameters are estimated through an EM-type iterative procedure, which
alternately estimates the neuronal activity by means of the Rauch-Tung-Striebel
(RTS) smoother, updates the connections among neuronal states and refines the
parameters of the hemodynamic model; sparsity in the interconnection structure
is favoured using an iteratively reweighting scheme. Experimental results using
rs-fMRI data are shown demonstrating the effectiveness of our approach and
comparison with state of the art routines (SPM12 toolbox) is provided
Online semi-parametric learning for inverse dynamics modeling
This paper presents a semi-parametric algorithm for online learning of a
robot inverse dynamics model. It combines the strength of the parametric and
non-parametric modeling. The former exploits the rigid body dynamics equa-
tion, while the latter exploits a suitable kernel function. We provide an
extensive comparison with other methods from the literature using real data
from the iCub humanoid robot. In doing so we also compare two different
techniques, namely cross validation and marginal likelihood optimization, for
estimating the hyperparameters of the kernel function
- …