28 research outputs found

    Engineering Aerothermal Analysis for X-34 Thermal Protection System Design

    Get PDF
    Design of the thermal protection system for any hypersonic flight vehicle requires determination of both the peak temperatures over the surface and the heating-rate history along the flight profile. In this paper, the process used to generate the aerothermal environments required for the X-34 Testbed Technology Demonstrator thermal protection system design is described as it has evolved from a relatively simplistic approach based on engineering methods applied to critical areas to one of detailed analyses over the entire vehicle. A brief description of the trajectory development leading to the selection of the thermal protection system design trajectory is included. Comparisons of engineering heating predictions with wind-tunnel test data and with results obtained using a Navier- Stokes flowfield code and an inviscid/boundary layer method are shown. Good agreement is demonstrated among all these methods for both the ground-test condition and the peak heating flight condition. Finally, the detailed analysis using engineering methods to interpolate the surface-heating-rate results from the inviscid/boundary layer method to predict the required thermal environments is described and results presented

    Engineering Aerothermal Analysis for X-34 Thermal Protection System Design

    Get PDF
    Design of the thermal protection system for any hypersonic flight vehicle requires determination of both the peak temperatures over the surface and the heating-rate history along the flight profile. In this paper, the process used to generate the aerothermal environments required for the X-34 Testbed Technology Demonstrator thermal protection system design is described as it has evolved from a relatively simplistic approach based on engineering methods applied to critical areas to one of detailed analyses over the entire vehicle. A brief description of the trajectory development leading to the selection of the thermal protection system design trajectory is included. Comparisons of engineering heating predictions with wind-tunnel test data and with results obtained using a Navier-Stokes flowfield code and an inviscid/boundary layer method are shown. Good agreement is demonstrated among all these methods for both the ground-test condition and the peak heating flight condition. Finally, the detailed analysis using engineering methods to interpolate the surface-heating-rate results from the inviscid/boundary layer method to predict the required thermal environments is described and results presented

    A Simplified Approach for the Rapid Generation of Transient Heat-Shield Environments

    Get PDF
    A simplified approach has been developed whereby transient entry heating environments are reliably predicted based upon a limited set of benchmark radiative and convective solutions. Heating, pressure and shear-stress levels, non-dimensionalized by an appropriate parameter at each benchmark condition are applied throughout the entry profile. This approach was shown to be valid based on the observation that the fully catalytic, laminar distributions examined were relatively insensitive to altitude as well as velocity throughout the regime of significant heating. In order to establish a best prediction by which to judge the results that can be obtained using a very limited benchmark set, predictions based on a series of benchmark cases along a trajectory are used. Solutions which rely only on the limited benchmark set, ideally in the neighborhood of peak heating, are compared against the resultant transient heating rates and total heat loads from the best prediction. Predictions based on using two or fewer benchmark cases at or near the trajectory peak heating condition, yielded results to within 5-10 percent of the best predictions. Thus, the method provides transient heating environments over the heat-shield face with sufficient resolution and accuracy for thermal protection system design and also offers a significant capability to perform rapid trade studies such as the effect of different trajectories, atmospheres, or trim angle of attack, on convective and radiative heating rates and loads, pressure, and shear-stress levels

    Aerocapture Systems Analysis for a Titan Mission

    Get PDF
    Performance projections for aerocapture show a vehicle mass savings of between 40 and 80%, dependent on destination, for an aerocapture vehicle compared to an all-propulsive chemical vehicle. In addition aerocapture is applicable to multiple planetary exploration destinations of interest to NASA. The 2001 NASA In-Space Propulsion Program (ISP) technology prioritization effort identified aerocapture as one of the top three propulsion technologies for solar system exploration missions. An additional finding was that aerocapture needed a better system definition and that supporting technology gaps needed to be identified. Consequently, the ISP program sponsored an aerocapture systems analysis effort that was completed in 2002. The focus of the effort was on aerocapture at Titan with a rigid aeroshell system. Titan was selected as the initial destination for the study due to potential interest in a follow-on mission to Cassini/Huygens. Aerocapture is feasible, and the performance is adequate, for the Titan mission and it can deliver 2.4 times more mass to Titan than an all-propulsive system for the same launch vehicle

    Another Thanks to All JSR Supporters

    Full text link

    Journal Support

    Full text link

    Another Thanks to All JSR Supporters

    Full text link

    Another Thanks to All JSR Supporters

    Full text link

    A Fond Farewell

    Full text link

    Journal Support

    Full text link
    corecore