63 research outputs found

    Serum retinol-binding protein 4 levels are elevated but do not contribute to insulin resistance in newly diagnosed Chinese hypertensive patients

    Get PDF
    BACKGROUND: Insulin resistance (IR) is closely correlated with cardiovascular disease (CVD). Retinol-binding protein 4 (RBP4) is a novel adipokine that modulates the action of insulin in various diseases. This study addressed the relationship between RBP4 and IR in newly diagnosed essential hypertension. METHODS: Serum RBP4, anthropometric and metabolic parameters were determined in 267 newly diagnosed essential hypertensive patients not taking antihypertensive medications. The patients along with 64 control (NC) normotensive and lean subjects paired by age and sex were divided into two groups depending on body mass index (BMI), hypertension with obesity (HPO) and hypertension without obesity (HP). RESULTS: A striking difference was observed in RBP4 levels between the HP and NC groups. Significantly higher levels were noted in the HP group compared with the NC group; slightly, but not significantly, lower levels were observed in the HPO group compared with the HP group. After adjusting for BMI, WC and WHR, a modestly linear relationship was observed between RBP4 levels and SBP (r = 0.377; p = 0.00), DBP (r = 0.288; p = 0.00) and HOMA-β(r = 0.121; p = 0.028). Multiple stepwise regression analysis showed that SBP, WHR and drinking were independently related with serum RBP4 levels. CONCLUSIONS: The results of this study indicated that RBP4 levels were increased in naive hypertensive patients; however, no differences were observed in obese or non-obese hypertensive subjects. Our data suggest for the first time that RBP4 levels are significantly increased but do not contribute to the development of IR in newly diagnosed hypertensive Chinese patients

    Patterns in leaf traits of woody species and their environmental determinants in a humid karstic forest in southwest China

    Get PDF
    IntroductionLeaf functional traits constitute a crucial component of plant functionality, providing insights into plants’ adaptability to the environment and their regulatory capacity in complex habitats. The response of leaf traits to environmental factors at the community level has garnered significant attention. Nevertheless, an examination of the environmental factors determining the spatial distribution of leaf traits in the karst region of southwest China remains absent.MethodsIn this study, we established a 25 ha plot within a karst forest and collected leaf samples from 144 woody species. We measured 14 leaf traits, including leaf area (LA), leaf thicknes (LT), specific leaf area (SLA), leaf length to width ratio (LW), leaf tissue density (LTD), leaf carbon concentration (LC), leaf nitrogen concentration (LN), and leaf phosphorus concentration (LP), leaf potassium concentration (LK), leaf calcium concentration (LCa), leaf magnesium Concentration (LMg), leaf carbon to nitrogen ratio (C/N), leaf carbon to phosphorus ratio (C/P), and leaf nitrogen to phosphorus ratio (N/P), to investigate the spatial distribution of community-level leaf traits and the response of the leaf trait community-weighted mean (CWM) to topographic, soil, and spatial factors.ResultsResults showed that the CWM of leaf traits display different spatial patterns, first, the highest CWM values for LT, LTD, C/N, and C/P at hilltops, second, the highest CWM values for LA, SLA, LW, LC, LN, LP, and LK at depressions, and third, the highest CWM values for LCa, LMg, and N/P at slopes. The correlation analysis showed that topographic factors were more correlated with leaf trait CWM than soil factors, with elevation and slope being the strongest correlations. RDA analysis showed that topographic factors explained higher percentage of leaf trait CWM than soil factors, with the highest percentage of 19.96% being explained by elevation among topographic factors. Variance Partitioning Analysis showed that the spatial distribution of leaf traits is predominantly influenced by the combined effects of topography and spatial factors (37%-47% explained), followed by purely spatial factors (24%-36% explained).DiscussionThe results could improve our understanding of community functional traits and their influencing factors in the karst region, which will contribute to a deeper understanding of the mechanisms that shape plant communities
    • …
    corecore