111 research outputs found

    Reengineering Production Systems: the Royal Netherlands Naval Dockyard

    Get PDF
    Reengineering production systems in an attempt to meet tight cost, quality and leadtime standards has received considerable attention in the last decade. In this paper, we discuss the reengineering process at the Royal Netherlands Naval Dockyard. The process starts with a characterisation and a careful analysis of the production system and the set of objectives to be pursued. Next, a new production management structure is defined after which supporting planning and control systems are designed and a number of organisational changes are carried through. In this way, the Dockyard may combine high technological capabilities with an excellent logistic performance

    Coordination mechanisms for inventory control in three-echelon serial and distribution systems

    Get PDF
    This paper is concerned with the coordination of inventory control in three-echelon serial and distribution systems under decentralized control. All installations in these supply chains track echelon inventories. Under decentralized control the installations will decide upon base stock levels that minimize their own inventory costs. In general these levels do not coincide with the optimal base stock levels in the global optimum of the chain under centralized control. Hence, the total cost under decentralized control is larger than under centralized control. To remove this cost inefficiency, two simple coordination mechanisms are presented: one for serial systems and one for distribution systems. Both mechanisms are initiated by the most downstream installation(s). The upstream installation increases its base stock level while the downstream installation compensates the upstream one for the increase of costs and provides it with a part of its gain from coordination. It is shown that both coordination mechanisms result in the global optimum of the chain being the unique Nash equilibrium of the corresponding strategic game. Furthermore, all installations agree upon the use of these mechanisms because they result in lower costs per installation. The practical implementation of these mechanisms is discussed. \u

    Capacity Planning and Leadtime management

    Get PDF
    In this paper we discuss a framework for capacity planning and lead time management in manufacturing companies, with an emphasis on the machine shop. First we show how queueing models can be used to find approximations of the mean and the variance of manufacturing shop lead times. These quantities often serve as a basis to set a fixed planned lead time in an MRP-controlled environment. A major drawback of a fixed planned lead time is the ignorance of the correlation between actual work loads and the lead times that can be realized under a limited capacity flexibility. To overcome this problem, we develop a method that determines the earliest possible completion time of any arriving job, without sacrificing the delivery performance of any other job in the shop. This earliest completion time is then taken to be the delivery date and thereby determines a workload-dependent planned lead time. We compare this capacity planning procedure with a fixed planned lead time approach (as in MRP), with a procedure in which lead times are estimated based on the amount of work in the shop, and with a workload-oriented release procedure. Numerical experiments so far show an excellent performance of the capacity planning procedure

    Computational procedures for stochastic multi-echelon production systems

    Get PDF
    This paper is concerned with the numerical evaluation of multi-echelon production systems. Each stage requires a fixed predetermined leadtime; furthermore, we assume a stochastic, stationary end-time demand process. In a previous paper, we have developed an analytical framework for determining optimal control policies for such systems under an average cost criterion.\ud \ud The current paper is based on this analytical theory but discusses computational aspects, in particular for serial and assembly systems. A hierarchical (exact) decomposition of these systems can be obtained by considering echelon stocks and by transforming penalty and holding costs accordingly. The one-dimensional problems arising after this decomposition however involve incomplete convolutions of distribution functions, which are only recursively defined. We develop numerical procedures for analysing these incomplete convolutions; these procedures are based on approximations of distribution functions by mixtures of Erlang distributions. Combining the analytically obtained (exact) decomposition results with these numerical procedures enables us to quickly determine optimal order-up-to levels for all stages. Moreover, expressions for the customer service level of such a multi-stage are obtained, yielding the possibility to determine policies which minimize average inventory holding costs, given a service level constraint

    A Decision Support System for Ship Maintenance Capacity Planning

    Get PDF
    In this paper, the basic framework and algorithms of a decision support system are discussed, which enhance process and capacity planning at a large repair shop. The research is strongly motivated by experiences in a project carried out at a dockyard, which performs repair, overhaul and modification programs for various classes of navy ships. We outline the basic requirements placed upon order acceptance, process planning and capacity scheduling for large maintenance projects. In subsequent sections a number of procedures and algorithms to deal with these requirements, in particular a procedure for workload-based capacity planning, a database system to support process planning are developed, as well as a resource-constrained project scheduling system to support work planning at a more detailed level. The system has been designed to support decision making at the Navy Dockyard in particular, however, we believe that, due to its generic structure, it is applicable to a wide range of project-based manufacturing and maintenance environments

    Minimizing weighted total earliness, total tardiness and setup costs

    Get PDF
    The paper considers a (static) portfolio system that satisfies adding-up contraints and the gross substitution theorem. The paper shows the relationship of the two conditions to the weak dominant diagonal property of the matrix of interest rate elasticities. This enables to investigate the impact of simultaneous changes in interest rates on the asset demands.

    Integrated service engineers and spare parts planning in the maintenance logistics

    Get PDF
    We analyze the integrated tactical capacity planning of spare parts supply and workforce allocation in maintenance logistics of advanced equipment. The equipment time-to-failure, spare parts replenishment time, and equipment repair time are random and independent of each other

    Incomplete convolutions in production and inventory models

    Get PDF
    In this paper, we study incomplete convolutions of continuous distribution functions, as they appear in the analysis of (multi-stage) production and inventory systems. Three example systems are discussed where these incomplete convolutions naturally arise. We derive explicit, nonrecursive formulae for these convolutions, for the relevant case in which the underlying distributions are (mixtures of) Erlang distributions with the same scale parameter. Numerical results for one example system, the multi-stage serial inventory system, are presented to show the effectiveness of these formulae

    Nonnegative matrices in dynamic programming

    Get PDF
    • …
    corecore