11 research outputs found

    The Milky Way like galaxy NGC 6384 and its nuclear star cluster at high NIR spatial resolution using LBT/ARGOS commissioning data

    Get PDF
    We analyse high spatial resolution near infra-red (NIR) imaging of NGC6384, a Milky Way like galaxy, using ARGOS commissioning data at the Large Binocular Telescope (LBT). ARGOS provides a stable PSFFWHM ⁣= ⁣0.2" ⁣ ⁣0.3"_{\rm FWHM}\!=\!0.2"\!-\!0.3" AO correction of the ground layer across the LUCI2 NIR camera 4 ⁣×44'\!\times4' field by using six laser guide stars (three per telescope) and a natural guide star for tip-tilt sensing and guiding. Enabled by this high spatial resolution we analyse the structure of the nuclear star cluster (NSC) and the central kiloparsec of NGC6384. We find via 2D modelling that the NSC (reff ⁣ ⁣10r_{\rm eff}\!\simeq\!10pc) is surrounded by a small (reff ⁣ ⁣100r_{\rm eff}\!\simeq\!100pc) and a larger Sersi\'c (reff ⁣ ⁣400r_{\rm eff}\!\simeq\!400pc), all embedded within the NGC\,6384 large-scale boxy/X-shaped bulge and disk. This proof-of-concept study shows that with the high spatial resolution achieved by ground-layer AO we can push such analysis to distances previously only accessible from space. SED-fitting to the NIR and optical HST photometry allowed to leverage the age-metallicity-extinction degeneracies and derive the effective NSC properties of an young to old population mass ratio of 8%8\% with M,old ⁣ ⁣3.5×107M{\cal M}_{\rm\star,old}\!\simeq\!3.5\times10^7M_\odot, Age$_{\rm old,\ young}\!=\!10.9\pm1.3Gyrand226MyrGyr and 226\,Myr \pm62\%,metallicity[M/H], metallicity [M/H]=\!-0.11\pm0.16and and 0.33\pm39\%dex,anddex, and E(B\!-\!V)\!=\!0.63$ and 1.44mag.Comment: 12 pages (+9 appendix), 11 figures, Accepted in MNRA

    First on-sky results with ARGOS at LBT

    Get PDF
    One year and an half after ARGOS first light, the Large Binocular Telescope (LBT) laser guided ground-layer adaptive optics (GLAO) system has been operated on both sides of the LBT. The system fulfills the GLAO promise and typically delivers an improvement by a factor of 2 in FWHM over the 4'×4' field of view of both Luci instruments, the two near-infrared imagers and multi-object spectrographs. In this paper, we report on the first on-sky results and analyze the performances based on the data collected so far. We also discuss adaptive optics procedures and the joint operations with Luci for science observations

    Commissioning of ARGOS at LBT: adaptive optics procedures

    Get PDF
    ARGOS is the laser guide star facility of the Large Binocular Telescope (LBT). It implements a Rayleigh Laser Guide Star system that provides Ground Layer Adaptive Optics (GLAO) correction for the LUCIs, the 2 wide- field near-infrared imagers and multi-object spectrographs installed on the 2 eyes of LBT. In this paper we describe how LBT’s adaptive optics operations have been tailored to ARGOS’s use cases based on the experience developed during over the ARGOS commissioning. We focus on all the aspects that are influenced by the use of the Laser Guide Stars, from collimation to acquisition and LGS guiding and we details the sequences to start, pause and resume the adaptive correction

    First Results of the Ground Layer Adaptive Optics System ARGOS

    Get PDF
    We present the first results of Argos, the multiple laser guide star and wavefront sensing facility for the Large Binocular Telescope. This system will deliver an improvement by a factor of two in FWHM over the 4′×4′ field of view of both Luci instruments. Luci 1 and Luci 2 are two near-infrared wide field imagers and multi-object spectrographs which capability and efficiency will be boosted by the increased resolution and encircled energy.The first on-sky ground-layer adaptive optics (GLAO) loop closure with Argos has been achieved in Fall 2014 on the right eye of the telescope. Stable operations in closed-loop have been demonstrated in May 2015 with hour-long integration and repeated good performances over several nights. Since then, the commissioning has been proceeding with the installation of the left system and the beginning of the left on-sky operations in this Fall 2015. The next achievements will be to strengthen the operational aspects and to perform science demonstration in both imaging and spectroscopic modes. We first present the current status of the project and review the operational aspects. Then, we analyze the first combined Luci and Argos observations and discuss the performances and the gains provided by Argos in term of scientific capabilities

    Status of the ARGOS ground layer adaptive optics system

    Full text link
    ARGOS the Advanced Rayleigh guided Ground layer adaptive Optics System for the LBT (Large Binocular Telescope) is built by a German-Italian-American consortium. It will be a seeing reducer correcting the turbulence in the lower atmosphere over a field of 2' radius. In such way we expect to improve the spatial resolution over the seeing of about a factor of two and more and to increase the throughput for spectroscopy accordingly. In its initial implementation, ARGOS will feed the two near-infrared spectrograph and imager - LUCI I and LUCI II. The system consist of six Rayleigh lasers - three per eye of the LBT. The lasers are launched from the back of the adaptive secondary mirror of the LBT. ARGOS has one wavefront sensor unit per primary mirror of the LBT, each of the units with three Shack-Hartmann sensors, which are imaged on one detector. In 2010 and 2011, we already mounted parts of the instrument at the telescope to provide an environment for the main sub-systems. The commissioning of the instrument will start in 2012 in a staged approach. We will give an overview of ARGOS and its goals and report about the status and new challenges we encountered during the building phase. Finally we will give an outlook of the upcoming work, how we will operate it and further possibilities the system enables by design.10 page(s

    Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): a multicentre, prospective observational study

    Full text link
    Background Results from retrospective studies suggest that use of neuromuscular blocking agents during general anaesthesia might be linked to postoperative pulmonary complications. We therefore aimed to assess whether the use of neuromuscular blocking agents is associated with postoperative pulmonary complications. Methods We did a multicentre, prospective observational cohort study. Patients were recruited from 211 hospitals in 28 European countries. We included patients (aged ≥18 years) who received general anaesthesia for any in-hospital procedure except cardiac surgery. Patient characteristics, surgical and anaesthetic details, and chart review at discharge were prospectively collected over 2 weeks. Additionally, each patient underwent postoperative physical examination within 3 days of surgery to check for adverse pulmonary events. The study outcome was the incidence of postoperative pulmonary complications from the end of surgery up to postoperative day 28. Logistic regression analyses were adjusted for surgical factors and patients’ preoperative physical status, providing adjusted odds ratios (ORadj) and adjusted absolute risk reduction (ARRadj). This study is registered with ClinicalTrials.gov, number NCT01865513. Findings Between June 16, 2014, and April 29, 2015, data from 22803 patients were collected. The use of neuromuscular blocking agents was associated with an increased incidence of postoperative pulmonary complications in patients who had undergone general anaesthesia (1658 [7·6%] of 21694); ORadj 1·86, 95% CI 1·53–2·26; ARRadj –4·4%, 95% CI –5·5 to –3·2). Only 2·3% of high-risk surgical patients and those with adverse respiratory profiles were anaesthetised without neuromuscular blocking agents. The use of neuromuscular monitoring (ORadj 1·31, 95% CI 1·15–1·49; ARRadj –2·6%, 95% CI –3·9 to –1·4) and the administration of reversal agents (1·23, 1·07–1·41; –1·9%, –3·2 to –0·7) were not associated with a decreased risk of postoperative pulmonary complications. Neither the choice of sugammadex instead of neostigmine for reversal (ORadj 1·03, 95% CI 0·85–1·25; ARRadj –0·3%, 95% CI –2·4 to 1·5) nor extubation at a train-of-four ratio of 0·9 or more (1·03, 0·82–1·31; –0·4%, –3·5 to 2·2) was associated with better pulmonary outcomes. Interpretation We showed that the use of neuromuscular blocking drugs in general anaesthesia is associated with an increased risk of postoperative pulmonary complications. Anaesthetists must balance the potential benefits of neuromuscular blockade against the increased risk of postoperative pulmonary complications
    corecore