26 research outputs found
Electrospun antimony doped tin oxide (ATO) nanofibers as a versatile conducting matrix
Nanoparticles of ATO (antimony doped tin oxide) were used to produce thick conductive, free standing mats of nanofibers via electrospinning. These fibrous mats were incorporated into polymer films to produce a transparent conducting polymer foil. Moreover, the fiber mats can serve as porous electrodes for electrodeposition of Prussian Blue and TiO2 and were tested in dye-sensitized solar cells
A Metric Framework for quantifying Data Concentration
Poor performance of artificial neural nets when applied to credit-related classification problems is investigated and contrasted with logistic regression classification. We propose that artificial neural nets are less successful because of the inherent structure of credit data rather than any particular aspect of the neural net structure. Three metrics are developed to rationalise the result with such data. The metrics exploit the distributional properties of the data to rationalise neural net results. They are used in conjunction with a variant of an established concentration measure that differentiates between class characteristics. The results are contrasted with those obtained using random data, and are compared with results obtained using logistic regression. We find, in general agreement with previous studies, that logistic regressions out-perform neural nets in the majority of cases. An approximate decision criterion is developed in order to explain adverse results
Recommended from our members
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 μm to 12 μm with the JWST’s Mid-Infrared Instrument. The spectra reveal a large day–night temperature contrast (with average brightness temperatures of 1,524 ± 35 K and 863 ± 23 K, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase-curve shape and emission spectra strongly suggest the presence of nightside clouds that become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1–6 ppm, depending on model assumptions). Our results provide strong evidence that the atmosphere of WASP-43b is shaped by disequilibrium processes and provide new insights into the properties of the planet’s nightside clouds. However, the remaining discrepancies between our observations and our predictive atmospheric models emphasize the importance of further exploring the effects of clouds and disequilibrium chemistry in numerical models.Peer reviewe
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5-12 μm with JWST's Mid-Infrared Instrument (MIRI). The spectra reveal a large day-night temperature contrast (with average brightness temperatures of 1524±35 and 863±23 Kelvin, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase curve shape and emission spectra strongly suggest the presence of nightside clouds which become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1-6 parts per million, depending on model assumptions)
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Hot Jupiters are among the best-studied exoplanets, but it is still poorly
understood how their chemical composition and cloud properties vary with
longitude. Theoretical models predict that clouds may condense on the nightside
and that molecular abundances can be driven out of equilibrium by zonal winds.
Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b
measured from 5-12 m with JWST's Mid-Infrared Instrument (MIRI). The
spectra reveal a large day-night temperature contrast (with average brightness
temperatures of 152435 and 86323 Kelvin, respectively) and evidence
for water absorption at all orbital phases. Comparisons with three-dimensional
atmospheric models show that both the phase curve shape and emission spectra
strongly suggest the presence of nightside clouds which become optically thick
to thermal emission at pressures greater than ~100 mbar. The dayside is
consistent with a cloudless atmosphere above the mid-infrared photosphere.
Contrary to expectations from equilibrium chemistry but consistent with
disequilibrium kinetics models, methane is not detected on the nightside
(2 upper limit of 1-6 parts per million, depending on model
assumptions).Comment: 61 pages, 13 figures, 4 tables. This preprint has been submitted to
and accepted in principle for publication in Nature Astronomy without
significant change
Identification of carbon dioxide in an exoplanet atmosphere
Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called 'metallicity')1-3, and thus the formation processes of the primary atmospheres of hot gas giants4-6. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets7-9. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification10-12. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme13,14. The data used in this study span 3.0-5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative-convective-thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models
Identification of carbon dioxide in an exoplanet atmosphere
Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’), and thus the formation processes of the primary atmospheres of hot gas giants. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models
Cation binding by thiacalixthianthrenes
International audienceThe complexing properties of a thiacalix[2]thianthrene 1 and its disulfoxide derivative 2 toward alkali metal, alkaline earth metal, some transition metal and some heavy metal cations have been investigated in acetonitrile by means of UV spectrophotometry. At the concentrations suited to this technique, complexation of the alkali metal cations by the sulfoxide but not the thiacalixthianthrene was detectable, whereas the converse was true for both transition metal and lanthanide cations. Complexation of the alkaline earth cations was not detectable. The strongest binding observed was that of Hg(II) to ligand 1 but in no case was complexation sufficiently strong for either ligand to function as a useful metal ion extractant. Graphical Abstract The complexing properties of a thiacalix[2]thianthrene 1 and its disulfoxide derivative 2 toward alkali metal, alkaline earth metal, some transition metal and some heavy metal cations have been investigated in acetonitrile by means of UV spectrophotometry. At the concentrations suited to this technique, complexation of the alkali metal cations by the sulfoxide but not the thiacalixthianthrene was detectable, whereas the converse was true for both transition metal and lanthanide cations. Complexation of the alkaline earth cations was not detectable. The strongest binding observed was that of Hg(II) to ligand 1 but in no case was complexation sufficiently strong for either ligand to function as a useful metal ion extractant