23 research outputs found

    Energy-efficient aggregate query evaluation in sensor networks

    No full text
    Sensor networks, consisting of sensor devices equipped with energy-limited batteries, have been widely used for surveillance and monitoring environments. Data collected by the sensor devices needs to be extracted and aggregated for a wide variety of purposes. Due to the serious energy constraint imposed on such a network, it is a great challenge to perform aggregate queries efficiently. This paper considers the aggregate query evaluation in a sensor network database with the objective to prolong the network lifetime. We first propose an algorithm by introducing a node capability concept that balances the residual energy and the energy consumption at each node so that the network lifetime is prolonged. We then present an improved algorithm to reduce the total network energy consumption for a query by allowing group aggregation. We finally evaluate the performance of the two proposed algorithms against the existing algorithms through simulations. The experimental results show that the proposed algorithms outperform the existing algorithms significantly in terms of the network lifetime

    Energy-Efficient Aggregate Query Evaluation in Sensor Networks

    No full text
    Sensor networks, consisting of sensor devices equipped with energy-limited batteries, have been widely used for surveillance and monitoring environments. Data collected by the sensor devices needs to be extracted and aggregated for a wide variety of purposes. Due to the serious energy constraint imposed on such a network, it is a great challenge to perform aggregate queries efficiently. This paper considers the aggregate query evaluation in a sensor network database with the objective to prolong the network lifetime. We first propose an algorithm by introducing a node capability concept that balances the residual energy and the energy consumption at each node so that the network lifetime is prolonged. We then present an improved algorithm to reduce the total network energy consumption for a query by allowing group aggregation. We finally evaluate the performance of the two proposed algorithms against the existing algorithms through simulations. The experimental results show that the proposed algorithms outperform the existing algorithms significantly in terms of the network lifetime

    Design Requirement and DC Bias Analysis on HVDC Converter Transformer

    No full text
    The converter transformer plays a critical role in the high-voltage direct current (HVDC) transmission system, which connects but separates the AC grids and the converter. This paper briefly introduced the essential design requirement of the HVDC converter transformer in a system at ±800kV level and analyzed the DC bias influence on the transformer. The DC bias current effect simulations are analyzed in MATLAB and ANSYS Maxwell in this paper, respectively

    Environmentally Friendly g-C<sub>3</sub>N<sub>4</sub>/Sepiolite Fiber for Enhanced Degradation of Dye under Visible Light

    No full text
    Herein, novel visible light active graphitic carbon nitride (g-C3N4)/sepiolite fiber (CN/SS) composites were fabricated via a facile calcination route, exploiting melamine and thiourea as precursors, and sepiolite fiber as support, for efficient degradation of organic dye methylene blue (MB). The as-prepared CN/SS composites were characterized by various characterization techniques based on structural and microstructural analyses. The effects of CN loading amount, catalyst dosage and initial concentration of dye on the removal rate of dye under visible light were systematically studied. The removal rate of MB was as high as 99.5%, 99.6% and 99.6% over the composites when the CN loading amount, catalyst dosage and initial concentration of dye were 20% (mass percent), 0.1 g, and 15 mg/L in 120 min, respectively. The active species scavenging experiments and electron paramagnetic resonance (EPR) measurement indicated that the holes (h+), hydroxyl radical (·OH) and superoxide radicals (·O2−) were the main active species. This study provides for the design of low-cost, environmentally friendly and highly efficient catalysts for the removal of organic dye

    A prognostic signature consisting of N6-methyladenosine modified mRNAs demonstrates clinical potential in prediction of biochemical recurrence and guidance on precision therapy in prostate cancer

    No full text
    Novel biomarkers are urgently needed to improve the prediction of clinical outcomes and guide personalized treatment for prostate cancer (PCa) patients. However, the role of N6-methyladenosine (m6A) modifications in PCa initiation and progression remains largely elusive. In our study, we collected benign Prostate Hyperplasia (BPH), localized PCa, and metastatic PCa samples from patients and performed methylated RNA immunoprecipitation sequencing (MeRIP-Seq) to map m6A-methylated mRNAs. Furthermore, we developed a prognostic signature based on 239 differentially methylated RNAs and the TCGA-PRAD dataset, which can be used to calculate an m6A-modified mRNA (MMM) score for a PCa patient, validated by independent multi-center cohorts. Our findings revealed that differential m6A modifications were positively correlated with altered expressions of mapped m6A-modified mRNAs. Higher MMM scores were associated with shorter times to biochemical recurrence (BCR) in PCa patients, and the MMM scoring system outperformed three well-established signatures in nine independent validation cohorts, as demonstrated by Kaplan-Meier survival analysis, C-index and ROC. Patients who did not respond to androgen receptor signaling inhibitor (ARSI) therapy and immunotherapy were found to have high MMM scores. Two hub genes, TLE1 and PFKL, were confirmed to have m6A sites through MeRIP-qPCR, and their knockdown promoted PCa cell invasion. Bioinformatics analysis of single-cell databases identified cell types with high transcript abundance levels of these two genes. In summary, our study is the first to perform transcriptome-wide m6A mapping in prostate tissues. The translational potential of a prognostic signature, comprising m6A-methylated mRNAs, in predicting clinical outcomes and therapy responses for PCa patients, is demonstrated
    corecore