2,823 research outputs found

    Contribution of CaMKIV to injury and fear- induced ultrasonic vocalizations in adult mice

    Get PDF
    Calcium-calmodulin dependent protein kinase IV (CaMKIV) is a protein kinase that activates the transcription factor CREB. Our previous work demonstrated that mice lacking CaMKIV had a defect in fear memory while behavioral responses to noxious stimuli were unchanged. Here, we measured ultrasonic vocalizations (USVs) before and after fear conditioning and in response to a noxious injection of capsaicin to measure behavioral responses to emotional stimuli. Consistent with previous findings, behavioral nociceptive responses to capsaicin were undistinguishable between wild-type and CaMKIV(-/- )mice. Wild-type animals showed a selective increase in 50 kHz USVs in response to capsaicin while such an increase was absent in CaMKIV(-/- )mice. The foot shock given during fear conditioning caused an increase in 30 kHz USVs in both wild-type and CaMKIV(-/- )mice. When returned to the context one hour later, USVs from the wild-type were significantly decreased. Additionally, the onset of a tone, which had previously been paired with the foot shock, caused a significant decrease in USVs during auditory conditioning. CaMKIV(-/- )mice showed significantly less reduction in USVs when placed in the same context three days after receiving the shock, consistent with the decrease in freezing reported previously. Our results provide a new approach for investigating the molecular mechanism for emotional vocalization in mice and suggest that CaMKIV dependent signaling pathways play an important role in the emotional response to pain and fear

    Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    Full text link
    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularlypolarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, {\theta}. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to {\theta}

    Fast trajectory matching using small binary images

    Get PDF
    This paper proposes a new trajectory matching method using logic operations on binary images. By using small binary images we are able to effectively utilize the large word size offered in modern CPU architectures, resulting in a very efficient evaluation of similarities between trajectories. The efficiency is caused by the fact that all bits in the same word are processed in parallel. Representing trajectories as small binary images has other advantages, such as a low space requirement and good noise resistance. The proposed method is evaluated on a publicly available dataset, and is compared to the more sophisticated Longest Common Subsequence (LCSS) method. In addition, synthetic experiments show the good efficiency and accuracy of the proposed method, enabling real time trajectory retrieval on databases with millions of trajectories.postprin

    Effects of Diversity on Multi-agent Systems: Minority Games

    Full text link
    We consider a version of large population games whose agents compete for resources using strategies with adaptable preferences. The games can be used to model economic markets, ecosystems or distributed control. Diversity of initial preferences of strategies is introduced by randomly assigning biases to the strategies of different agents. We find that diversity among the agents reduces their maladaptive behavior. We find interesting scaling relations with diversity for the variance and other parameters such as the convergence time, the fraction of fickle agents, and the variance of wealth, illustrating their dynamical origin. When diversity increases, the scaling dynamics is modified by kinetic sampling and waiting effects. Analyses yield excellent agreement with simulations.Comment: 41 pages, 16 figures; minor improvements in content, added references; to be published in Physical Review

    CREB activity maintains the survival of cingulate cortical pyramidal neurons in the adult mouse brain

    Get PDF
    Cyclic AMP-responsive element binding protein (CREB) activity is known to contribute to important neuronal functions, such as synaptic plasticity, learning and memory. Using a microelectroporation technique to overexpress dominant negative mutant CREB (mCREB) in the adult mouse brain, we found that overexpression of mCREB in the forebrain cortex induced neuronal degeneration. Our findings suggest that constitutively active CREB phosphorylation is important for the survival of mammalian cells in the brain

    Hot receptors in the brain

    Get PDF
    Two major approaches have been employed for the development of novel drugs to treat chronic pain. The most traditional approach identifies molecules involved in pain as potential therapeutic targets and has focused mainly on the periphery and spinal cord. A more recent approach identifies molecules that are involved in long-term plasticity. Drugs developed through the latter approach are predicted to treat chronic, but not physiological or acute, pain. The TRPV1 (transient receptor potential vanilloid-1) receptor is involved in nociceptive processing, and is a candidate therapeutic target for pain. While most research on TRPV1 receptors has been conducted at the level of the spinal cord and peripheral structures, considerably less research has focused on supraspinal structures. This short paper summarizes progress made on TRPV1 receptors, and reviews research on the expression and function of TRPV1 receptors in supraspinal structures. We suggest that the TRPV1 receptor may be involved in pain processing in higher brain structures, such as the anterior cingulate cortex. In addition, some regions of the brain utilize the TRPV1 receptor for functions apparently unrelated to pain
    • …
    corecore