165,119 research outputs found
First-Principles Study of Integer Quantum Hall Transitions in Mesoscopic Samples
We perform first principles numerical simulations to investigate resistance
fluctuations in mesoscopic samples, near the transition between consecutive
Quantum Hall plateaus. We use six-terminal geometry and sample sizes similar to
those of real devices. The Hall and longitudinal resistances extracted from the
generalized Landauer formula reproduce all the experimental features uncovered
recently. We then use a simple generalization of the Landauer-B\"uttiker model,
based on the interplay between tunneling and chiral currents -- the co-existing
mechanisms for transport -- to explain the three distinct types of fluctuations
observed, and identify the central region as the critical region.Comment: changes to acknowledgements onl
Non-linear Plasma Wake Growth of Electron Holes
An object's wake in a plasma with small Debye length that drifts
\emph{across} the magnetic field is subject to electrostatic electron
instabilities. Such situations include, for example, the moon in the solar wind
wake and probes in magnetized laboratory plasmas. The instability drive
mechanism can equivalently be considered drift down the potential-energy
gradient or drift up the density-gradient. The gradients arise because the
plasma wake has a region of depressed density and electrostatic potential into
which ions are attracted along the field. The non-linear consequences of the
instability are analysed in this paper. At physical ratios of electron to ion
mass, neither linear nor quasilinear treatment can explain the observation of
large-amplitude perturbations that disrupt the ion streams well before they
become ion-ion unstable. We show here, however, that electron holes, once
formed, continue to grow, driven by the drift mechanism, and if they remain in
the wake may reach a maximum non-linearly stable size, beyond which their
uncontrolled growth disrupts the ions. The hole growth calculations provide a
quantitative prediction of hole profile and size evolution. Hole growth appears
to explain the observations of recent particle-in-cell simulations
Hyperspherical Close-Coupling Calculation of D-wave Positronium Formation and Excitation Cross Sections in Positron-Hydrogen Scattering
Hyperspherical close-coupling method is used to calculate the elastic,
positronium formation and excitation cross sections for positron collisions
with atomic hydrogen at energies below the H(n=4) threshold for the J=2 partial
wave. The resonances below each inelastic threshold are also analyzed. The
adiabatic hyperspherical potential curves are used to identify the nature of
these resonances.Comment: 12 pages(in a TeX file) +8 Postscript figure
- …