37 research outputs found

    Intellectual Property Rights (IPRs) in Software Industry of Pakistan: An Overview of Dual Perspective of Demand and Supply Side

    Get PDF
    The current study is to understand the following aspects of IPR in Pakistan: (1) the readiness of IT skilled workforce to adopt and understand IPR policies in their business environment. (2) The legislative structure available in the country to implement and adopt IPR policies in IT related business environment. The key market players are realizing the importance of IPR for international and nationwide acceptance and growth. The software industry in Pakistan can contribute with much more impressive manner if the IPR policies will be adopted timely by the industry, and the facilities and encouragement provided by the administrative authorities immediately. Keywords: Intellectual Property Rights, Software Industry, Pakistan, IT skilled workforce, Software Protection, Information Technology, IPR Polic

    KRADA: Known-region-aware Domain Alignment for Open World Semantic Segmentation

    Full text link
    In semantic segmentation, we aim to train a pixel-level classifier to assign category labels to all pixels in an image, where labeled training images and unlabeled test images are from the same distribution and share the same label set. However, in an open world, the unlabeled test images probably contain unknown categories and have different distributions from the labeled images. Hence, in this paper, we consider a new, more realistic, and more challenging problem setting where the pixel-level classifier has to be trained with labeled images and unlabeled open-world images -- we name it open world semantic segmentation (OSS). In OSS, the trained classifier is expected to identify unknown-class pixels and classify known-class pixels well. To solve OSS, we first investigate which distribution that unknown-class pixels obey. Then, motivated by the goodness-of-fit test, we use statistical measurements to show how a pixel fits the distribution of an unknown class and select highly-fitted pixels to form the unknown region in each image. Eventually, we propose an end-to-end learning framework, known-region-aware domain alignment (KRADA), to distinguish unknown classes while aligning distributions of known classes in labeled and unlabeled open-world images. The effectiveness of KRADA has been verified on two synthetic tasks and one COVID-19 segmentation task

    Gradient constrained sharpness-aware prompt learning for vision-language models

    Full text link
    This paper targets a novel trade-off problem in generalizable prompt learning for vision-language models (VLM), i.e., improving the performance on unseen classes while maintaining the performance on seen classes. Comparing with existing generalizable methods that neglect the seen classes degradation, the setting of this problem is more strict and fits more closely with practical applications. To solve this problem, we start from the optimization perspective, and leverage the relationship between loss landscape geometry and model generalization ability. By analyzing the loss landscapes of the state-of-the-art method and vanilla Sharpness-aware Minimization (SAM) based method, we conclude that the trade-off performance correlates to both loss value and loss sharpness, while each of them is indispensable. However, we find the optimizing gradient of existing methods cannot maintain high relevance to both loss value and loss sharpness during optimization, which severely affects their trade-off performance. To this end, we propose a novel SAM-based method for prompt learning, denoted as Gradient Constrained Sharpness-aware Context Optimization (GCSCoOp), to dynamically constrain the optimizing gradient, thus achieving above two-fold optimization objective simultaneously. Extensive experiments verify the effectiveness of GCSCoOp in the trade-off problem.Comment: 19 pages 11 figure

    HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain Generalization

    Full text link
    Domain Generalization (DG) endeavors to create machine learning models that excel in unseen scenarios by learning invariant features. In DG, the prevalent practice of constraining models to a fixed structure or uniform parameterization to encapsulate invariant features can inadvertently blend specific aspects. Such an approach struggles with nuanced differentiation of inter-domain variations and may exhibit bias towards certain domains, hindering the precise learning of domain-invariant features. Recognizing this, we introduce a novel method designed to supplement the model with domain-level and task-specific characteristics. This approach aims to guide the model in more effectively separating invariant features from specific characteristics, thereby boosting the generalization. Building on the emerging trend of visual prompts in the DG paradigm, our work introduces the novel \textbf{H}ierarchical \textbf{C}ontrastive \textbf{V}isual \textbf{P}rompt (HCVP) methodology. This represents a significant advancement in the field, setting itself apart with a unique generative approach to prompts, alongside an explicit model structure and specialized loss functions. Differing from traditional visual prompts that are often shared across entire datasets, HCVP utilizes a hierarchical prompt generation network enhanced by prompt contrastive learning. These generative prompts are instance-dependent, catering to the unique characteristics inherent to different domains and tasks. Additionally, we devise a prompt modulation network that serves as a bridge, effectively incorporating the generated visual prompts into the vision transformer backbone. Experiments conducted on five DG datasets demonstrate the effectiveness of HCVP, outperforming both established DG algorithms and adaptation protocols

    Probabilistic Margins for Instance Reweighting in Adversarial Training

    Full text link
    Reweighting adversarial data during training has been recently shown to improve adversarial robustness, where data closer to the current decision boundaries are regarded as more critical and given larger weights. However, existing methods measuring the closeness are not very reliable: they are discrete and can take only a few values, and they are path-dependent, i.e., they may change given the same start and end points with different attack paths. In this paper, we propose three types of probabilistic margin (PM), which are continuous and path-independent, for measuring the aforementioned closeness and reweighting adversarial data. Specifically, a PM is defined as the difference between two estimated class-posterior probabilities, e.g., such the probability of the true label minus the probability of the most confusing label given some natural data. Though different PMs capture different geometric properties, all three PMs share a negative correlation with the vulnerability of data: data with larger/smaller PMs are safer/riskier and should have smaller/larger weights. Experiments demonstrate that PMs are reliable measurements and PM-based reweighting methods outperform state-of-the-art methods.Comment: 17 pages, 4 figure

    Strength-Adaptive Adversarial Training

    Full text link
    Adversarial training (AT) is proved to reliably improve network's robustness against adversarial data. However, current AT with a pre-specified perturbation budget has limitations in learning a robust network. Firstly, applying a pre-specified perturbation budget on networks of various model capacities will yield divergent degree of robustness disparity between natural and robust accuracies, which deviates from robust network's desideratum. Secondly, the attack strength of adversarial training data constrained by the pre-specified perturbation budget fails to upgrade as the growth of network robustness, which leads to robust overfitting and further degrades the adversarial robustness. To overcome these limitations, we propose \emph{Strength-Adaptive Adversarial Training} (SAAT). Specifically, the adversary employs an adversarial loss constraint to generate adversarial training data. Under this constraint, the perturbation budget will be adaptively adjusted according to the training state of adversarial data, which can effectively avoid robust overfitting. Besides, SAAT explicitly constrains the attack strength of training data through the adversarial loss, which manipulates model capacity scheduling during training, and thereby can flexibly control the degree of robustness disparity and adjust the tradeoff between natural accuracy and robustness. Extensive experiments show that our proposal boosts the robustness of adversarial training

    Demystifying Assumptions in Learning to Discover Novel Classes

    Full text link
    In learning to discover novel classes (L2DNC), we are given labeled data from seen classes and unlabeled data from unseen classes, and we train clustering models for the unseen classes. However, the rigorous definition of L2DNC is unexplored, which results in that its implicit assumptions are still unclear. In this paper, we demystify assumptions behind L2DNC and find that high-level semantic features should be shared among the seen and unseen classes. This naturally motivates us to link L2DNC to meta-learning that has exactly the same assumption as L2DNC. Based on this finding, L2DNC is not only theoretically solvable, but can also be empirically solved by meta-learning algorithms after slight modifications. This L2DNC methodology significantly reduces the amount of unlabeled data needed for training and makes it more practical, as demonstrated in experiments. The use of very limited data is also justified by the application scenario of L2DNC: since it is unnatural to label only seen-class data, L2DNC is sampling instead of labeling in causality. Therefore, unseen-class data should be collected on the way of collecting seen-class data, which is why they are novel and first need to be clustered

    How Well Does GPT-4V(ision) Adapt to Distribution Shifts? A Preliminary Investigation

    Full text link
    In machine learning, generalization against distribution shifts -- where deployment conditions diverge from the training scenarios -- is crucial, particularly in fields like climate modeling, biomedicine, and autonomous driving. The emergence of foundation models, distinguished by their extensive pretraining and task versatility, has led to an increased interest in their adaptability to distribution shifts. GPT-4V(ision) acts as the most advanced publicly accessible multimodal foundation model, with extensive applications across various domains, including anomaly detection, video understanding, image generation, and medical diagnosis. However, its robustness against data distributions remains largely underexplored. Addressing this gap, this study rigorously evaluates GPT-4V's adaptability and generalization capabilities in dynamic environments, benchmarking against prominent models like CLIP, LLaVA, and Gemini. We delve into GPT-4V's zero-shot generalization across 13 diverse datasets spanning natural, medical, and molecular domains. We further investigate its adaptability to controlled data perturbations and examine the efficacy of in-context learning as a tool to enhance its adaptation. Our findings delineate GPT-4V's capability boundaries in distribution shifts, shedding light on its strengths and limitations across various scenarios. Importantly, this investigation contributes to our understanding of how AI foundation models generalize to distribution shifts, offering pivotal insights into their adaptability and robustness. The code is publicly available at https://github.com/jameszhou-gl/gpt-4v-distribution-shift.Comment: added the investigation of Gemini. 66 pages, 41 figure
    corecore